Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 1-12     DOI: 10.6046/zrzyyg.2023193
|
Remote sensing-based exploration of coalbed methane enrichment areas:Advances in research and prospects
QIN Qiming1,2(), WU Zihua1, YE Xin1,3, WANG Nan1,4, HAN Guhuai1
1. Institute of Remote Sensing and Geographical Information System, School of Space and Earth Sciences, Peking University, Beijing 100871, China
2. Geographic Information System Technology Innovation Center, Ministry of Natural Resources, Beijing 100871, China
3. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
4. School of Computer Science, Beijing Information Science and Technology University, Beijing 100192, China
Download: PDF(2192 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Coalbed methane (CBM), a type of self-sourced unconventional clean energy, occurs in coal seams and their surrounding rocks. Conventional exploration methods for CBM enrichment areas are laborious, while remote sensing provides a new approach to the rapid exploration of such areas. The basic principle behind the remote sensing-based exploration of CBM enrichment areas is as follows: ① The extraction and comprehensive analysis of multi-source data are conducted based on the comparison between the spectral features of typical surface features and those of surface feature anomalies, including rock and mineral alterations, vegetation anomalies, and thermal anomalies, caused by hydrocarbon micro-seepage in CBM enrichment areas, along with data obtained using geophysical prospecting methods like geological, seismic, and magnetotelluric methods; ② The distribution range and gas-bearing properties of CBM enrichment areas are gradually delineated. This paper reviews the hydrocarbon seepage in the CBM enrichment areas and the response mechanisms of spectral anomalies of surface rocks, minerals, and vegetation. It covers the applications of various methods based on the inversion of spectral parameters of surface rocks, minerals, and vegetation, together with the inversion of the spectral anomalies of surface features, in the exploration of potential CBM enrichment areas. Additionally, this paper elucidates the different explanations for surface thermal anomalies caused by CBM-bearing strata, as well as major methods to improve the accuracy of surface temperature inversion and their applications. In the future, the main approach to achieving low-cost, rapid exploration of CBM enrichment areas will be the analysis and information extraction of three-dimensional, multi-source information based on the combination of remote sensing technology with the geological data, seismic exploration, and geomagnetic prospecting of coalfields.

Keywords coalbed methane enrichment area      hydrocarbon micro-seepage      remote sensing-based exploration      multi-source data extraction     
ZTFLH:  TP79  
  P618.13  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiming QIN
Zihua WU
Xin YE
Nan WANG
Guhuai HAN
Cite this article:   
Qiming QIN,Zihua WU,Xin YE, et al. Remote sensing-based exploration of coalbed methane enrichment areas:Advances in research and prospects[J]. Remote Sensing for Natural Resources, 2024, 36(3): 1-12.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023193     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/1
Fig.1  Spectral features of several typical minerals in the USGS database
指数名称 表达式 含义 参考文献
三价铁指数1 ρ R e d ρ B l u e 反映土壤中三价铁矿物丰度,也即土壤“红度” [30-31]
三价铁指数2 ρ R e d ρ B l u e · ρ R e d + ρ S W I R 1650 ρ N I R 反映土壤中三价铁矿物丰度,适用于三价铁丰度较高的情形 [30-31]
二价铁指数1 ρ G r e e n + ρ S W I R 1650 ρ R e d + ρ N I R 反映土壤中二价铁矿物丰度 [31]
二价铁指数2 ρ S W I R 2167 ρ N I R + ρ G r e e n ρ R e d 反映土壤中二价铁矿物丰度 [15]
黏土和碳酸盐矿物指数 ρ N I R ρ S W I R 1650 反映土壤中黏土和碳酸盐矿物的丰度 [31-32]
Tab.1  Common spectral indices used for monitoring rock and mineral alteration caused by hydrocarbon micro-seepage
传感器 波段选择 降维方法 研究对象 参考文献
ASTER B1,B3,B4,B6 PCA 黏土矿物蚀变 [15]
B1,B3,B4,B5 碳酸盐岩蚀变
Landsat7 ETM+ B1,B4,B5,B7 PCA 红层褪色 [32]
B1,B3,B4,B5 PCA 二价铁丰度
B3,B4,B5,B7 PCA 黏土和碳酸盐矿物丰度
Landsat8 OLI B2,B4,B5,B6 PCA
PCA
二价铁丰度 [34]
B2,B5,B6,B7 黏土矿物蚀变
Sentinel-2 MSI B3,B6,B8A,B11 PCA

PCA
二价铁丰度 [14]
B3,B8,B11,B12 氢氧根丰度
EO-1 Hyperion 全波段 MNF 像元纯度计算与端元提取 [21,35]
Tab.2  Spectral dimensionality reduction methods for monitoring mineral alteration caused by hydrocarbon micro-seepage
指数名称 表达式 含义 参考文献
NDVI ρ N I R - ρ R e d ρ N I R + ρ R e d 综合反映植被长势 [48?-50]
绿光归一化差值植被指数(GNDVI) ρ N I R - ρ G r e e n ρ N I R + ρ G r e e n 对叶绿素含量敏感 [47,51]
增强归一化差值植被指数(ENDVI) ρ N I R + ρ G r e e n - 2 ρ B l u e ρ N I R + ρ G r e e n + 2 ρ B l u e 综合反映植被长势,适用于各个生育期 [52-53]
OSAVI ρ N I R - ρ R e d ρ N I R + ρ R e d + 0.16 综合反映植被长势,较好地消除了土壤背景的影响 [47,54]
增强植被指数(EVI) 2.5 ( ρ N I R - ρ R e d ) 1 + ρ N I R + 6 ρ R e d - 7.5 ρ B l u e 对叶面积指数敏感 [52,55]
反转差值植被指数(IDVI) 1 + ( ρ N I R - ρ R e d ) 1 - ( ρ N I R - ρ R e d ) 综合反映植被长势,在高植被覆盖情况下不易饱和 [56]
红边位置植被指数(RPVI) ( ρ R e d - b ) / k + ( ρ N I R - b ) / k 2 对叶绿素含量敏感 [46]
Tab.3  Common spectral indices used for monitoring vegetation stress caused by hydrocarbon micro-seepage
[1] 王大锐. 我国煤层气工业前途远大——访我国著名天然气勘探专家、973项目首席科学家宋岩教授[J]. 石油知识, 2005(3):2.
[1] Wang D R. The future of China’s coalbed methane industry is promising:Interview with professor Song Yan,a famous natural gas exploration expert and chief scientist of the 973 project in China[J]. Petroleum Knowledge, 2005(3):2.
[2] Flores R M. Coalbed methane:From hazard to resource[J]. International Journal of Coal Geology 1998, 35(1-4):3-26.
[3] Flores R M. Coal and coalbed gas[M]//Fueling the future. Amsterdam: Elsevier, 2014:587-614.
[4] Qin Y, Moore T A, Shen J, et al. Resources and geology of coalbed methane in China:A review[J]. International Geology Review, 2018, 60(5-6):777-812.
[5] 桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[M]. 煤炭学报, 2022:1-23.
[5] Sang S X, Yuan L, Liu S Q, et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society, 2022:1-23.
[6] 潘海洋, 程爱国, 赵欣, 等. 地勘时期煤层瓦斯与煤层气测试标准对比研究[J]. 中国煤炭地质, 2019, 31(4):30-34.
[6] Pan H Y, Cheng A G, Zhao X, et al. Contrastive study of coal seam gas and CBM testing standards during exploration[J]. Coal Geology of China, 2019, 31(4):30-34.
[7] 邵林海, 刘池阳, 丁清香, 等. 韩城煤层气三维地震勘探区11# 煤层含气量预测[J]. 地质科技情报, 2016, 35(1):147-151.
[7] Shao L H, Liu C Y, Ding Q X, et al. Predication of 11# coalbed gas content in Hancheng coalbed methane 3D seismic survey[J]. Geological Science and Technology Information, 2016, 35(1):147-151.
[8] 何展翔, 贺振华, 王绪本, 等. 油气非地震勘探技术的发展趋势[J]. 地球物理学进展, 2002, 17(3):473-479.
[8] He Z X, He Z H, Wang X B, et al. Tendency of non-seismic techniques of hydrocarbon prospecting[J]. Progress in Geophysics, 2002, 17(3):473-479.
[9] 赵贤正, 朱庆忠, 孙粉锦, 等. 沁水盆地高阶煤层气勘探开发实践与思考[J]. 煤炭学报, 2015(9):2131-2136.
[9] Zhao X Z, Zhu Q Z, Sun F J, et al. Practice and thought of coalbed methane exploration and development in Qinshui Basin[J]. Journal of China Coal Society, 2015(9):2131-2136.
[10] 叶建平, 陆小霞. 我国煤层气产业发展现状和技术进展[J]. 煤炭科学技术, 2016, 44(1):24-28.
[10] Ye J P, Lu X X. Development status and technical progress of China coalbed methane industry[J]. Coal Science and Technology, 2016, 44(1):24-28.
[11] 吴海波, 徐宏杰, 张平松, 等. 基于地震反演参数的煤层气储层甜点区预测[J]. 煤炭科学技术, 2018, 46(7):218-222.
[11] Wu H B, Xu H J, Zhang P S, et al. Sweet-spot prediction for CBM reservoir based on seismic inversion parameters[J]. Coal Science and Technology, 2018, 46(7):218-222.
[12] MacElvain R, Heroy W. Mechanics of gaseous ascension through a sedimentary column[J]. Unconventional Methods in Exploration for Petroleum and Natural Gas, 1969:15-28.
[13] Saunders D F, Burson K R, Thompson C K. Model for hydrocarbon microseepage and related near-surface alterations[J]. AAPG bulletin, 1999, 83(1):170-185.
[14] Chen L, Yang X, Zhen G. Potential of Sentinel-2 data for alteration extraction in coal-bed methane reservoirs[J]. Ore Geology Reviews, 2019, 108:134-146.
doi: 10.1016/j.oregeorev.2017.10.009
[15] 李娜, 周萍. 基于ASTER数据和反射光谱分析的烃类微渗漏信息提取[J]. 地质力学学报, 2015(2):218-227.
[15] Li N, Zhou P. Hydrocarbon microleakage information extraction based on ASTER data and reflectance spectroscopy[J]. Journal of Geomechanics, 2015(2):218-227.
[16] 谢青云, 丁树柏. 油气资源遥感技术若干问题的探讨[J]. 国土资源遥感, 1994(2):55-62.doi:10.6046/gtzyyg.1994.02.10.
[16] Xie Q Y, Ding S B. Discussion of the some problems of the remote sensing technology for oil-gas resource[J]. Remote Sensing for Land and Resources, 1994(2):55-62.doi:10.6046/gtzyyg.1994.02.10.
[17] 姜洪训, 刘生福, 李英武. 综合地质物化探多参数直接找油理论方法与效果[M]. 西安: 陕西科学技术出版社, 1995.
[17] Jiang H X, Liu S F, Li Y W, et al. Theoretical methods and effects of comprehensive geophysical and geochemical exploration with multiple parameters for direct oil exploration[M]. Xi’an: Shaanxi Science and Technology Press, 1995.
[18] 蒋洪波, 秦其明, 李百寿. 煤层气排采动态的被动式超低频频谱分析[J]. 光谱学与光谱分析, 2011, 31(7):1898-1901.
[18] Jiang H B, Qin Q M, Li B S. Passive SLF spectrum analysis for tracing the mining dynamic of CBM[J]. Spectroscopy and Spectral Analysis, 2011, 31(7):1898-1901.
[19] Wang N, Qin Q, Chen L, et al. Dynamic monitoring of coalbed methane reservoirs using super-low frequency electromagnetic prospecting[J]. International Journal of Coal Geology, 2014, 127:24-41.
[20] Lammoglia T, De Souza F C R. Mapping and characterization of the API gravity of offshore hydrocarbon seepages using multispectral ASTER data[J]. Remote Sensing of Environment, 2012, 123:381-389.
[21] Zhang C, Qin Q, Chen L, et al. Rapid determination of coalbed methane exploration target region utilizing hyperspectral remote sensing[J]. International Journal of Coal Geology, 2015, 150:19-34.
[22] Asadzadeh S, De Souza Filho C R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection[J]. Remote Sensing of Environment, 2016, 173:162-173.
[23] Asadzadeh S, De Souza F C R. Spectral remote sensing for onshore seepage characterization:A critical overview[J]. Earth-Science Reviews, 2017, 168:48-72.
[24] Thauer R K. Anaerobic oxidation of methane with sulfate:On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2[J]. Current Opinion in Microbiology, 2011, 14(3):292-299.
[25] Adams R S Jr, Ellis R Jr. Some physical and chemical changes in the soil brought about by saturation with natural gas[J]. Soil Science Society of America Journal, 1960, 24(1):41-44.
[26] Schumacher D. Hydrocarbon-induced alteration of soils and sediments[M/OL]//Schumacher D,Abrams M A. Hydrocarbon migration and its near-surface expression.American association of petroleum geologists [2022-05-09]. https://pubs.geoscienceworld.org/books/book/1308/chapter/107169077.
url: https://pubs.geoscienceworld.org/books/book/1308/chapter/107169077
[27] Neue H U. Methane emission from rice fields[J]. BioScience, 1993, 43(7):466-474.
[28] 甘甫平, 王润生. 遥感岩矿信息提取基础与技术方法研究[M]. 北京: 地质出版社, 2004.
[28] Gan F P, Wang R S. Research on the fundamentals and technical methods of remote sensing rock and mineral information extraction[M]. Beijing: Geological Publishing House, 2004.
[29] 崔鑫, 赵英俊, 田丰, 等. 准噶尔盆地东北缘航空高光谱油气微渗漏探测及地质验证[J]. 地质学报, 2019, 93(4):928-944.
[29] Cui X, Zhao Y J, Tian F, et al. Hyperspectral hydrocarbon exploration and geological verification of the oil and gas micro-seepage in the northeastern margin of the Junggar Basin,China[J]. Acta Geologica Sinica, 2019, 93(4):928-944.
[30] Rockwell B W. Description and validation of an automated methodology for mapping mineralogy,vegetation,and hydrothermal alteration type from ASTER satellite imagery with examples from the San Juan Mountains,Colorado[R]. Reston,Virginia: US Geological Survey, 2012:35.
[31] Rockwell B W. Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains,Colorado[R]. Reston,Virginia: US Geological Survey, 2013:25.
[32] Garain S, Mitra D, Das P. Detection of hydrocarbon microseepage-induced anomalies by spectral enhancements of Landsat7 ETM+ images in part of Assam-Arakan Fold Belt,India[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4):2573-2582.
[33] Luo G, Chen G, Tian L, et al. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising[J]. Canadian Journal of Remote Sensing, 2016, 42(2):106-116.
[34] Chen L, Li W, Chen L, et al. Potential prediction of coalbed methane anomaly region utilizing Landsat8 OLI and GF-2 images[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:6819-6822.
[35] El-Hadidy S M, Alshehri F, Sahour H, et al. Detecting hydrocarbon micro-seepage and related contamination,probable prospect areas,deduced from a comparative analysis of multispectral and hyperspectral satellite images[J]. Journal of King Saud University-Science, 2022, 34(6):102192.
[36] 胡畔, 田庆久, 闫柏琨. 柴达木盆地地表酸解烃含量的高光谱遥感估算[J]. 天然气工业, 2009, 29(2):32-36.
[36] Hu P, Tian Q J, Yan B K. Estimating acidolysis hydrocarbon content in surface of Qaidam Basin through hyperspectral remote sensing[J]. Natural Gas Industry, 2009, 29(2):32-36.
[37] Drew M C. Oxygen deficiency and root metabolism:Injury and acclimation under hypoxia and anoxia[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48(1):223-250.
[38] Drew M C, Cobb B G, Johnson J R, et al. Metabolic acclimation of root tips to oxygen deficiency[J]. Annals of Botany, 1994, 74(3):281-286.
[39] Al-Abbas A H, Barr R, Hall J D, et al. Spectra of normal and nutrient-deficient maize leaves 1[J]. Agronomy Journal, 1974, 66(1):16-20.
[40] 邬登巍, 吴昀昭, 马宏瑞. 植物污染胁迫遥感监测研究综述[J]. 遥感技术与应用, 2009, 24(2):238-245.
doi: 10.11873/j.issn.1004-0323.2009.2.238
[40] Wu D W, Wu Y Z, Ma H R. Review on remote sensing monitoring on contaminated plant[J]. Remote Sensing Technology and Application, 2009, 24(2):238-245.
[41] Jamaludin M I, Matori A N, Myint K C. Application of NIR to determine effects of hydrocarbon microseepage in oil palm vegetation stress[C]// 2015 International Conference on Space Science and Communication (IconSpace).IEEE, 2015:215-220.
[42] Noomen M F. Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage[D]. Wageningen: Wageningen University and Research, 2007.
[43] Arellano P, Tansey K, Balzter H, et al. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[J]. Environmental Pollution, 2015, 205:225-239.
doi: 10.1016/j.envpol.2015.05.041 pmid: 26074164
[44] Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance[J]. International Journal of Remote Sensing, 1983, 4(2):273-288.
[45] 申晋利, 丁树柏, 齐小平, 等. 烃类微渗漏现象遥感检测研究进展[J]. 国土资源遥感, 2010, 22(3):7-11.doi: 10.6046/gtzyyg.2010.03.02.
[45] Shen J L, Ding S B, Qi X P, et al. The progress of remote sensing technology in the detection of hydrocarbon micro-seepage[J]. Remote Sensing for Land and Resources, 2010, 22(3):7-11.doi: 10.6046/gtzyyg.2010.03.02.
[46] 韩谷怀, 孙元亨, 秦其明. 基于Sentinel-2/MSI数据的煤层气烃微渗漏植被异常区提取[J]. 遥感学报, 2023, 27(7):1713-1730.
[46] Han G H, Sun Y H, Qin Q M. Extraction of vegetation anomaly caused by coalbed methane hydrocarbon microseepage based on Sentinel-2/MSI[J]. National Remote Sensing Bulletin, 2023,2023, 27(7):1713-1730.
[47] Kashyap R. Vegetation stress as chief indicator for detection of hydrocarbon microseepage in regions of north-eastern India[J]. Spatial Information Research, 2022, 30(5):571-584.
[48] Ahmed M. Exploration of hydrocarbon resources using remote sensing and geographical information system[C]//AIP Conference Proceedings:2119. AIP Publishing LLC, 2019:020001.
[49] Garain S, Mitra D, Das P. Detection of hydrocarbon microseepage prospects using Landsat8-based vegetation stress analysis in part of Assam-Arakan Fold Belt,NE India[J]. Arabian Journal of Geosciences, 2021, 14(19):1984.
[50] Rouse J, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA special publication, 1974, 351:309.
[51] Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3):289-298.
[52] Susantoro T M, Wikantika K, Saepuloh A, et al. Utilization of vegetation indices to interpret the possibility of oil and gas microseepages at ground surface[J]. IOP Conference Series:Earth and Environmental Science, 2018, 145:012012.
[53] Maxmax. ENDVI[EB/OL].(2015-06-18) [2023-06-15]. https://www.maxmax.com/endvi.htm.
url: https://www.maxmax.com/endvi.htm
[54] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2):95-107.
[55] Boegh E, Soegaard H, Broge N, et al. Airborne multispectral data for quantifying leaf area index,nitrogen concentration,and photosynthetic efficiency in agriculture[J]. Remote Sensing of Environment, 2002, 81(2-3):179-193
[56] Sun Y, Ren H, Zhang T, et al. Crop leaf area index retrieval based on inverted difference vegetation index and NDVI[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11):1662-1666.
[57] Mohammed G H, Colombo R, Middleton E M, et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation:50 years of progress[J]. Remote Sensing of Environment, 2019, 231:111177.
[58] Gholizadeh A, Kopačková V. Detecting vegetation stress as a soil contamination proxy:A review of optical proximal and remote sensing techniques[J]. International Journal of Environmental Science and Technology, 2019, 16(5):2511-2524.
[59] Jonard F, De Cannière S, Brüggemann N, et al. Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes:Current status and challenges[J]. Agricultural and Forest Meteorology, 2020, 291:108088.
[60] Magney T S, Frankenberg C, Fisher J B, et al. Connecting active to passive fluorescence with photosynthesis:A method for evaluating remote sensing measurements of Chl fluorescence[J]. The New Phytologist, 2017, 215(4):1594-1608.
[61] Roháček K, Soukupová J, Barták M. Chlorophyll fluorescence:A wonderful tool to study plant physiology and plant stress[M]// Benoît S.Plant Cell Compartments-Selected Topics. Kerala: Research Signpost,2008:41-104.
[62] Liu X, Liu Z, Liu L, et al. Modelling the influence of incident radiation on the SIF-based GPP estimation for maize[J]. Agricultural and Forest Meteorology, 2021, 307:108522.
[63] 张伟, 薛辉, 于磊. 日光诱导叶绿素荧光高光谱成像仪研究[J]. 红外与激光工程, 2021, 50(10):20210311.
[63] Zhang W, Xue H, Yu L. Study on hyperspectral imager for the solar induced chlorophyll fluorescence observation[J]. Infrared and Laser Engineering, 2021, 50(10):20210311.
[64] Flexas J, Briantais J M, Cerovic Z, et al. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves:A new remote sensing system[J]. Remote Sensing of Environment, 2000, 73(3):283-297.
[65] 彭金龙, 李萌, 褚荣浩, 等. 日光诱导叶绿素荧光反演及其在植被环境胁迫监测中的研究进展[J]. 江苏农业科学, 2021, 49(24):29-40.
[65] Peng J L, Li M, Chu R H, et al. Research progress of sun-induced chlorophyll fluorescence inversion and its application in vegetation environmental stress monitoring[J]. Jiangsu Agricultural Sciences, 2021, 49(24):29-40.
[66] 张景波, 张金鑫, 卢琦, 等. 乌兰布和沙漠油蒿叶片PSⅡ叶绿素荧光动力学参数及其光响应曲线动态[J]. 草业科学, 2019, 36(3):713-719.
[66] Zhang J B, Zhang J X, Lu Q, et al. Dynamic changes of leaf parameters of PSⅡ fluorescence kinetics and fast photosynthetic response curves in Artemisia ordosica[J]. Pratacultural Science, 2019, 36(3):713-719.
[67] Qin Q, Wu Z, Zhang T, et al. Optical and thermal remote sensing for monitoring agricultural drought[J]. Remote Sensing, 2021, 13(24):5092.
[68] Zhang Z, Xu W, Qin Q, et al. Monitoring and assessment of agricultural drought based on solar-induced chlorophyll fluorescence during growing season in North China Plain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:775-790.
[69] Zhang L, Qiao N, Huang C, et al. Monitoring drought effects on vegetation productivity using satellite solar-induced chlorophyll fluorescence[J]. Remote Sensing, 2019, 11(4):378.
[70] Wang X, Qiu B, Li W, et al. Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence[J]. Science of the Total Environment, 2019, 693:133627.
[71] 赵叶, 竞霞, 黄文江, 等. 日光诱导叶绿素荧光与反射率光谱数据监测小麦条锈病严重度的对比分析[J]. 光谱学与光谱分析, 2019, 39(9):2739-2745.
[71] Zhao Y, Jing X, Huang W J, et al. Comparison of sun-induced chlorophyll fluorescence and reflectance data on estimating severity of wheat stripe rust[J]. Spectroscopy and Spectral Analysis, 2019, 39(9):2739-2745.
doi: 10.3964/j.issn.1000-0593(2019)09-2739-07
[72] 瞿瑛, 刘素红, 李小文. 重金属Cu胁迫下典型农作物叶片日光诱导荧光辐射特征提取研究[J]. 光谱学与光谱分析, 2012, 32(5):1282-1286.
[72] Qu Y, Liu S H, Li X W. A novel method for extracting leaf-level solar-induced fluorescence of typical crops under Cu stress[J]. Spectroscopy and Spectral Analysis, 2012, 32(5):1282-1286.
[73] 朱冰雪, 陈圣波, 周超, 等. Cu胁迫下油菜叶片日光诱导荧光辐射特征[J]. 科学技术与工程, 2018, 18(10):1-5.
[73] Zhu B X, Chen S B, Zhou C, et al. Rape leaf solar-induced fluorescence radiation characteristics under Cu stress[J]. Science Technology and Engineering, 2018, 18(10):1-5.
[74] 黄秀华, 李正文, 关燕宁, 等. 热红外遥感找油的时效性研究[J]. 遥感学报, 2003, 7(2):142-145.
[74] Huang X H, Li Z W, Guan Y N, et al. Temporal effectiveness of thermal infra-red remote sensing applied to oil-gas exploration[J]. Journal of Remote Sensing, 2003, 7(2):142-145.
[75] Guo W, Parizek R R. Field research on thermal anomalies indicating sulflde-oxidation reactions in mine spoil[M]. Washington: ACS Publications, 1994.
[76] 南鹏, 秦其明, 姚云军. 地表温度异常机理及热红外遥感监测——以河南焦作煤层气富集区为例[J]. 北京大学学报(自然科学版), 2009, 45(1):137-143.
[76] Nan P, Qin Q, Yao Y. Land surface temperature anomalies and monitoring through thermal remote sensing:A case of coal bed methane area at Jiaozuo,Henan Province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1):137-143.
[77] Price J C. Thermal inertia mapping:A new view of the Earth[J]. Journal of Geophysical Research, 1977, 82(18):2582-2590.
[78] Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(d22):4688.
[79] Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746.
[80] 胡德勇, 乔琨, 王兴玲, 等. 单窗算法结合 Landsat8 热红外数据反演地表温度[J]. 遥感学报, 2015, 19(6):964-976.
[80] Hu D Y, Qiao K, Wang X L, et al. Land surface temperature retrieval from Landsat8 thermal infrared data using mono-window algorithm[J]. Journal of Remote Sensing, 2015, 19(6):964-976.
[81] 周纪, 李京, 赵祥, 等. 用HJ-1B卫星数据反演地表温度的修正单通道算法[J]. 红外与毫米波学报, 2011, 30(1):61-67.
[81] Zhou J, Li J, Zhao X, et al. A modified single-channel algorithm for land surface temperature retrieval from HJ-1B satellite data[J]. Journal of Infrared and Millimeter Waves, 2011, 30(1):61-67.
[82] Cristóbal J, Jiménez-Muñoz J, Prakash A, et al. An improved single-channel method to retrieve land surface temperature from the Landsat8 thermal band[J]. Remote Sensing, 2018, 10(3):431.
[83] Suherman A, Rahman M A, Busu I. Albedo and land surface temperature shift in hydrocarbon seepage potential area,case study in Miri Sarawak Malaysia[J]. IOP Conference Series:Earth and Environmental Science, 2014, 18:012148.
[84] Garain S, Mitra D, Das P. Landsat8-based surface temperature anomaly and hydrocarbon prospectivity:A study in part of Assam-Arakan Fold Belt,North East India[J]. Current Science, 2020, 119(1):128.
[85] Du C, Ren H, Qin Q, et al. A practical split-window algorithm for estimating land surface temperature from Landsat8 data[J]. Remote Sensing, 2015, 7(1):647-665.
[86] Sun D, Pinker R T. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8)[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(d11):4326.
[87] Sun D, Pinker R T. Retrieval of surface temperature from the MSG-SEVIRI observations:Part I.Methodology[J]. International Journal of Remote Sensing, 2007, 28(23):5255-5272.
[88] Ye X, Ren H, LIU R, et al. Land surface temperature estimate from Chinese Gaofen-5 satellite data using split-window algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5877-5888.
[89] Sobrino J A, Romaguera M. Land surface temperature retrieval from MSG1-SEVIRI data[J]. Remote Sensing of Environment, 2004, 92(2):247-254.
[90] Atitar M, Sobrino J A. A split-window algorithm for estimating LST from Meteosat 9 data:Test and comparison with in situ data and MODIS LSTs[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1):122-126.
[91] Gillespie A R, Abbott E A, Gilson L, et al. Residual errors in ASTER temperature and emissivity standard products AST08 and AST05[J]. Remote Sensing of Environment, 2011, 115(12):3681-3694.
[92] Sabol Jr D E, Gillespie A R, Abbott E, et al. Field validation of the ASTER temperature-emissivity separation algorithm[J]. Remote Sensing of Environment, 2009, 113(11):2328-2344.
[93] Gillespie A, Rokugawa S, Matsunaga T, et al. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4):1113-1126.
[94] Hulley G C, Hook S J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4):1304-1315.
[95] Jiménez-Muñoz J C, Sobrino J A, Mattar C, et al. Temperature and emissivity separation from MSG/SEVIRI data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5937-5951.
[96] Nie J, Ren H, Zheng Y, et al. Land surface temperature and emissivity retrieval from nighttime middle-infrared and thermal-infrared Sentinel-3 images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(5):915-919.
[97] Ren H, Ye X, Liu R, et al. Improving land surface temperature and emissivity retrieval from the Chinese Gaofen-5 satellite using a hybrid algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(2):1080-1090.
[98] Chen S, Ren H, Ye X, et al. Geometry and adjacency effects in urban land surface temperature retrieval from high-spatial-resolution thermal infrared images[J]. Remote Sensing of Environment, 2021, 262:112518.
[99] Tarish A B, Sali A, Mohamed Shariff A R, et al. Thermal satellite imagery analysis and emissivity characteristics for the prediction of oil reservoirs existence[C]// 2021 7th International Conference on Space Science and Communication (IconSpace). 2021: 227-232.
[100] Muhammad I A. Hydrocarbon exploration using thermal images west Baghdad[J]. Engineering and Technology Journal, 2015, 33(2b):307-317.
[101] Al Farid A. Knowledge and data driven approaches for hydrocarbon microseepage characterizations:An application of satellite remote sensing[D]. Lund: Lund University, 2020.
[102] Wang N, Qin Q. Natural source electromagnetic component exploration of coalbed methane reservoirs[J]. Minerals, 2022, 12(6):680.
[103] 陈理. 煤层气富集区高光谱遥感和电磁探测技术与方法研究[D]. 北京: 北京大学, 2015.
[103] Chen L. Study on hyperspectral remote sensing and electromagnetic exploration technology for coalbed methane enrichment region[D]. Beijing: Peking University, 2015.
[104] Walton C, Evans B, Urosevic M. Imaging coal seam structure using 3-D seismic methods[J]. Exploration Geophysics, 2000, 31(3):509-514.
[105] 张留荣, 曾维望. 地震技术在煤层气勘探开发中的应用现状与发展趋势[J]. 中国煤炭地质, 2017, 29(6):68-73.
[105] Zhang L R, Zeng W W. Application status quo and development trend of seismic prospecting technology in cbm exploitation[J]. Coal Geology of China, 2017, 29(6):68-73.
[106] Li Q, Peng S, Zou G. High resolution processing of 3D seismic data for thin coal seam in Guqiao coal mine[J]. Journal of Applied Geophysics, 2015, 115:32-39.
[1] Dachang YANG, Jie CHEN, Zihong GAO, Yachao HAN. Extraction of hydrocarbon micro-seepage information based on TG-1 hyperspectral data[J]. Remote Sensing for Land & Resources, 2018, 30(2): 107-113.
[2] SHEN Jin-Li, DING Shu-Bai, QI Xiao-Ping, XiNG Hua-Wen. The Progress of Remote Sensing Technology in the Detection of Hydrocarbon Micro-seepage[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech