Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 108-116     DOI: 10.6046/zrzyyg.2023121
|
Building height inversion based on the complex shadow measurement method
LI Zhixin1(), JI Song1(), FAN Dazhao1, GAO Ding1, LI Yongjian1, WANG Ren2
1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
2. Shandong Wuzheng Group Co.,Ltd., Rizhao 276800, China
Download: PDF(11331 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Building heights are necessary for urban informatics, providing a significant basis for the planning and early warning of risks for urban construction. The shadow method, which can measure the heights of urban buildings on a large scale at a low cost, faces challenges such as low efficiency, accuracy, and robustness in building height inversion in complex shadow scenes. This study proposed a measurement method for these scenes. First, the shadows were measured and delineated using the fishing net method combined with multiple constraints. Second, the shadow lengths of all the zones divided were obtained, and the optimal values were determined using the quartile method and the bidirectional approximation strategy. Third, the shadow lengths were determined through a comprehensive assessment of the optimal values of all zones. The results show that 90.6% of building heights calculated using the new method exhibited absolute errors ranging from 0 to 5 m. Therefore, this method features elevated accuracy of building height inversion for various complex shadow scenes, laying a basis for research into the inversion and expansion of urban building heights.

Keywords fishing net method      zonal statistics      quartile method to eliminate gross error      bidirectional approximation strategy      optimal value evaluation     
ZTFLH:  TP79  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhixin LI
Song JI
Dazhao FAN
Ding GAO
Yongjian LI
Ren WANG
Cite this article:   
Zhixin LI,Song JI,Dazhao FAN, et al. Building height inversion based on the complex shadow measurement method[J]. Remote Sensing for Natural Resources, 2024, 36(3): 108-116.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023121     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/108
Fig.1  Building shadow measurement technique route
Fig.2-1  Building shadow scene
Fig.2-2  Building shadow scene
Fig.3  Partition measurement
Fig.4  Determine the optimal value
Fig.5  Optimal value evaluation technique route
Fig.6  A visualization of the study area
Fig.7  Schematic diagram of geometric relationship between building and shadow
Fig.8  Schematic diagram of partition measurement results
测量方法 MAE/m MRE/% RMSE/m
文献[9] 7.494 8.8 10.498
文献[12] 5.675 6.7 9.318
文献[16] 7.136 8.3 10.565
本文方法 1.332 1.8 1.657
Tab.1  Statistic of measurement error
Fig.9  Error of building height estimation in different shadow scenes
研究区 MAE/m MRE/% RMSE/m
简单场景1 3.179 5.3 2.292
简单场景2 2.995 9.8 4.362
简单场景3 1.949 2.1 1.388
简单场景4 1.204 3.5 4.014
复杂场景1 3.455 3.8 4.589
复杂场景2 2.362 5.4 2.745
复杂场景3 4.512 6.3 5.526
复杂场景4 3.733 10.1 4.763
Tab.2  Building height error statistics
Fig.10  Statistical chart of building height error
[1] Huang H, Chen P, Xu X, et al. Estimating building height in China from ALOS AW3D30[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185:146-157.
[2] Qin R. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96:179-192.
[3] Venter Z S, Brousse O, Esau I, et al. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data[J]. Remote Sensing of Environment, 2020, 242:111791.
[4] Zhang Z, Qian Z, Zhong T, et al. Vectorized rooftop area data for 90 cities in China[J]. Scientific Data, 2022, 9(1):66.
doi: 10.1038/s41597-022-01168-x pmid: 35236863
[5] 岳照溪, 张永军, 段延松, 等. DEM辅助的卫星光学遥感影像山体阴影检测与地形辐射校正[J]. 测绘学报, 2018, 47(1):113-122.
doi: 10.11947/j.AGCS.2018.20170194
[5] Yue Z X, Zhang Y J, Duan Y S, et al. DEM assisted shadow detection and topography correction of satellite remote sensing images in mountainous area[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):113-122.
doi: 10.11947/j.AGCS.2018.20170194
[6] 陈亭, 祝善友, 张桂欣, 等. 高分辨率遥感影像阴影与立体像对提取建筑物高度比较研究[J]. 地球信息科学学报, 2016, 18(9):1267-1275.
doi: 10.3724/SP.J.1047.2016.01267
[6] Chen T, Zhu S Y, Zhang G X, et al. A comparative study on building height extraction based on the shadow information in high resolution remote sensing image and stereo images[J]. Journal of Geo-Information Science, 2016, 18(9):1267-1275.
[7] Irvin R B, McKeown D M. Methods for exploiting the relationship between buildings and their shadows in aerial imagery[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1989, 19(6):1564-1575.
[8] Shettigara V K, Sumerling G M. Height determination of extended objects using shadows in SPOT images[J]. Photogrammetric Engineering and Remote Sensing, 1998, 64(1):35-43.
[9] Wang X, Yu X, Ling F. Building heights estimation using ZY3 data:A case study of Shanghai,China[C]// 2014 IEEE Geoscience and Remote Sensing Symposium.IEEE, 2014:1749-1752.
[10] Turker M, Sumer E. Building-based damage detection due to earthquake using the watershed segmentation of the post-event aerial images[J]. International Journal of Remote Sensing, 2008, 29(11):3073-3089.
[11] Shao Y, Taff G N, Walsh S J. Shadow detection and building-height estimation using IKONOS data[J]. International Journal of Remote Sensing, 2011, 32(22):6929-6944.
[12] Liasis G, Stavrou S. Satellite images analysis for shadow detection and building height estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:437-450.
[13] 张豪. 基于深度学习的遥感影像建筑物阴影提取方法研究[D]. 成都: 西南交通大学, 2020.
[13] Zhang H. Research on building shadow extraction method of Remote sensing image based on deep learning[D]. Chengdu: Southwest Jiaotong University, 2020.
[14] 马川. 基于单幅高分辨率遥感影像的城市建筑物三维几何建模[D]. 成都: 西南交通大学, 2012.
[14] Ma C. 3D geometric modeling of buildings with a single high resolution remotely sensed image[D]. Chengdu: Southwest Jiaotong University, 2012.
[15] 王永刚, 刘慧平. 利用角点最近距离统计平均法计算建筑物阴影长度[J]. 国土资源遥感, 2008, 20(3):32-36.doi:10.6046/gtzyyg.2008.03.08.
[15] Wang Y G, Liu H P. The calculation of building shadow length using statistical average method based on corner shortest distance[J]. Remote Sensing for Land and Resources, 2008, 20(3):32-36.doi:10.6046/gtzyyg.2008.03.08.
[16] Xie Y, Feng D, Xiong S, et al. Multi-scene building height estimation method based on shadow in high resolution imagery[J]. Remote Sensing, 2021, 13(15):2862.
[17] 李志新, 王梦飞, 贾伟洁, 等. 一种结合阴影信息的建筑物层数识别方法[J]. 自然资源遥感, 2023, 35(3):97-106.doi:10.6046/zrzyyg.2022226.
[17] Li Z X, Wang M F, Jia W J, et al. A method for identifying the number of building floors basod on shadow information[J]. Remote Sensing for Natural Resources, 2023, 35(3):97-106.doi:10.6046/zrzyyg.2022226.
[18] 陈冲. 基于高分影像阴影的多场景建筑物高度反演研究[D]. 西安: 西安科技大学, 2020.
[18] Chen C. Building heigh information extraction from shadow derived from highresolution satellite image based on scene classification[D]. Xi'an: Xi'an University of Science and Technology, 2020.
[19] 谢亚坤. 基于高分影像阴影的多种场景建筑物高度信息提取方法研究[D]. 成都: 西南交通大学, 2018.
[19] Xie Y K. Research on building height information extraction method based on shadow of high-resolution image in multiple scenes[D]. Chengdu: Southwest Jiaotong University, 2018.
[20] 张珩. 高分影像建筑物阴影检测方法及其高度反演研究[D]. 成都: 西南交通大学, 2017.
[20] Zhang H. Research on buildings shadow detection method and height inversion with high resolution sensed image[D]. Chengdu: Southwest Jiaotong University, 2017.
[21] 陈钧. 能力验证结果统计处理中四分位数的算法探讨[J]. 中国计量, 2012(12) :94-95.
[21] Chen J. Discussion on the algorithm of quartile in statistical processing of ability verification results[J]. China Metrology, 2012(12):94-95.
[22] 王杰茜. 基于高度反演的建筑物阴影分类方法研究[D]. 成都: 西南交通大学, 2021.
[22] Wang J X. Research on building shadow classification method based on height inversion[D]. Chengdu: Southwest Jiaotong University, 2021.
[23] Luo S, Li H, Shen H. Deeply supervised convolutional neural network for shadow detection based on a novel aerial shadow imagery dataset[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:443-457.
[1] LI Zhixin, WANG Mengfei, JIA Weijie, JI Song, WANG Yufei. A method for identifying the number of building floors based on shadow information[J]. Remote Sensing for Natural Resources, 2023, 35(3): 97-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech