|
|
A method for identifying faults based on well-controlled multi-attribute fusion using a feedforward neural network |
ZHAO Jun( ), RAN Qi, ZHU Bo-Hua( ), LI Yang, LIANG Shu-Yuan, CHANG Jian-Qiang |
Geophysical Research Institute, SINOPEC, Nanjing 211103, China |
|
|
Abstract The fault-controlled fractured-vuggy carbonate reservoirs in the Tarim Basin exhibitconsiderable burial depths, complex structures, and highly developed faults. Faults serve asa dominant factor controlling oil and gas accumulation and possible hydrocarbon migration pathways in the study area. Hence, it is critical to predict their spatial distributions and sizes. There existvariousfault detection attributes, which characterize fault scales and features differently due totheir different calculation methods.Moreover, conventional attribute detection ignores the use and constraints of logs. For more complete and accurate fault prediction results, this study selected multiple fault detection attributes for fusion using the feedforward neural network algorithm, with logs as prior information. First of all, a sample database for fault feature identification was established using fault attributes (like AFE, likelihood, and dip angle) with distinct characteristics anddiscrimination criteria of fault types, including lost circulation data, imaging logs, and seismic event dislocations.The deep feedforward neural network was trained based on the sample database.A neural network prediction model with a minimum prediction error was obtained by comparing and testing the learning effects under different hidden layer depths. Finally, the neural network prediction model was applied to the fault prediction of the study area. The comparative analysis reveals thatthe fault prediction using deeplearning-based fused attributesyielded prediction results more consistent with the log-based interpretation results, and could synthesize the information of faults with different scale characteristics, thus effectively improving the prediction accuracy and reliability.
|
Received: 01 December 2023
Published: 19 September 2024
|
|
|
|
|
|
Flow chart of well-controlling attribute fusion using feedforward neural network
|
|
Structure diagram of deep feedforward neural network
|
判别因素 | 定性显示或定量值域 | 组合 | 放空漏失情况(主要) | 放空、漏失量 大于30m3 | 2(大断面):满足3个以上判别因素且至少包含1个主要因素 1(小断面):满足1到2个判别因素且至少包含1个主要因素 0(非断面):主要因素=0项 | 成像测井情况(主要) | 显示断面 | AFE(次要) | 100~255 | 相干(次要) | -128~0 | Likelihood(次要) | 0.3~1.0 | 纹理(次要) | >5 | 倾角属性(次要) | >5 |
|
Classify principle of fracture type
|
|
Sample point seismic profile across well A (a) and well B (b)
|
样本点 | AFE | 相干 | likelihood | 纹理 | 倾角 属性 | 断面类型 | A井ls_2 | 255 | -90 | 0.95 | 7.94 | 16.33 | 2 | B井ls_2 | 0 | 117 | 0 | 0.76 | 5.69 | 0 | B井ls_3 | 0 | -43 | 0.79 | 3.59 | 6.53 | 2 | C井ls_1 | 0 | 60 | 0 | 0.67 | 1.71 | 1 | D井ls_1 | 0 | 109 | 0 | 0.75 | 1.7 | 0 | D井ls_2 | 55.99 | -39 | 0 | 3.42 | 5.26 | 2 |
|
Attribute values and fracture type of partial sample points
|
DFNN深度 | 均方误差MSE | 相关系数 | 2层 | 0.0294 | 0.8415 | 3层 | 0.0037 | 0.9891 | 4层 | 0.012 | 0.9471 | 5层 | 0.0315 | 0.8758 | 6层 | 0.0789 | 0.7886 |
|
DFNN test statistics of different hidden layer depths
|
|
DFNN model training error curve
|
|
Cross well trajectory profile of well C a—seismic data; b—AFE; c—coherent; d—likelihood; e—texture; f—dip; g—deep learning fusion attribute
|
T 7 4 a—AFE; b—coherent; c—likelihood; d—texture; e—dip; f—deep learning fusion attribute ">
|
Attribute slices along a—AFE; b—coherent; c—likelihood; d—texture; e—dip; f—deep learning fusion attribute
|
|
Deep learning fusion attribute logging evaluation of well F and well G
|
[1] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1):1-17.
|
[1] |
Ma Y S, Cai X Y, Yun L, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field,Tarim Basin,NW China[J]. Petroleum Exploration and Development, 2022, 49(1):1-17.
|
[2] |
王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4):58-71.
|
[2] |
Wang Q H, Yang H J, Wang R J, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4):58-71.
|
[3] |
文山师, 李海英, 洪才均, 等. 顺北油田断溶体储层地震响应特征及描述技术[J]. 断块油气田, 2020, 27(1):45-49.
|
[3] |
Wen S S, Li H Y, Hong C J, et al. Technology of seismic response characteristics and description of fault-Karst reservoir in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2020, 27(1):45-49.
|
[4] |
漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3):38-51.
|
[4] |
Qi L X. Oil and gas breakthrough in ultra-deep Ordovician carbonate formations in Shuntuoguole uplift,Tarim Basin[J]. China Petroleum Exploration, 2016, 21(3):38-51.
|
[5] |
焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5):831-839.
|
[5] |
Jiao F Z. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole Area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5):831-839.
|
[6] |
胡再元, 孙东, 胡圆圆, 等. 断裂系统对碳酸盐岩储层的控制作用——以塔里木盆地塔中Ⅲ区奥陶系为例[J]. 天然气地球科学, 2015, 26(S1):97-108.
|
[6] |
Hu Z Y, Sun D, Hu Y Y, et al. Controlling effect of fault system on carbonate reservoir—Taking Ordovician in Tazhong Ⅲ area of Tarim Basin as an example[J]. Natural Gas Geoscience, 2015, 26(S1):97-108.
|
[7] |
熊婷, 贾春明, 妥军军, 等. 基于正演模拟的最大似然法火山岩有效裂缝识别及预测[J]. 特种油气藏, 2021, 28(5):30-36.
|
[7] |
Xiong T, Jia C M, Tuo J J, et al. Identification and prediction of effective fractures in volcanic rocks by maximum likelihood method based on forward modeling[J]. Special Oil & Gas Reservoirs, 2021, 28(5):30-36.
|
[8] |
董林, 宋维琪, 胡建林, 等. 动态时间规整的断层增强方法[J]. 石油地球物理勘探, 2021, 56(3):574-582,414-415.
|
[8] |
Dong L, Song W Q, Hu J L, et al. A fault enhancing method based on dynamic time warping[J]. Oil Geophysical Prospecting, 2021, 56(3):574-582,414-415.
|
[9] |
张志伟, 刘军, 彭光荣, 等. 方向性边界保持相干增强技术在开平复杂地震资料中的应用[J]. 物探化探计算技术, 2021, 43(3):311-316.
|
[9] |
Zhang Z W, Liu J, Peng G R, et al. Application of orientational edge preserving coherence enhancement technique in Kaiping complex seismic data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(3):311-316.
|
[10] |
张石磊, 胡志成, 付丽华. 基于高阶统计量的相干算法研究[J]. 地球物理学进展, 2016, 31(4):1762-1766.
|
[10] |
Zhang S L, Hu Z C, Fu L H. New coherence algorithm based on higher order statistics[J]. Progress in Geophysics, 2016, 31(4):1762-1766.
|
[11] |
蔡涵鹏, 胡光岷, 贺振华, 等. 基于非线性变时窗相干算法的不连续性检测方法[J]. 石油地球物理勘探, 2016, 51(2):371-375,209.
|
[11] |
Cai H P, Hu G M, He Z H, et al. Subtle discontinuity detection with nonlinear variable-time window coherency algorithm[J]. Oil Geophysical Prospecting, 2016, 51(2):371-375,209.
|
[12] |
王震, 文欢, 邓光校, 等. 塔河油田碳酸盐岩断溶体刻画技术研究与应用[J]. 石油物探, 2019, 58(1):149-154.
|
[12] |
Wang Z, Wen H, Deng G X, et al. Fault-Karst characterization technology in the Tahe Oilfield,China[J]. Geophysical Prospecting for Petroleum, 2019, 58(1):149-154.
|
[13] |
梁志强. 不同尺度裂缝的叠后地震预测技术研究[J]. 石油物探, 2019, 58(5):766-772.
|
[13] |
Liang Z Q. Poststack seismic prediction techniques for fractures of different scales[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):766-772.
|
[14] |
刘群, 李海英, 邓光校. 地震断裂检测技术在塔河油田南部碳酸盐岩储层及油藏预测中的应用[J]. 石油与天然气地质, 2013, 34(2):202-206.
|
[14] |
Liu Q, Li H Y, Deng G X. Application of seismic fault detection to carbonate reservoir prediction in southern Tahe oilfield[J]. Oil & Gas Geology, 2013, 34(2):202-206.
|
[15] |
卢志强, 王力, 杨瑞召, 等. 基于相干的精细断裂刻画技术在顺北地区的应用[J]. 天然气勘探与开发, 2018, 41(3):20-25.
|
[15] |
Lu Z Q, Wang L, Yang R Z, et al. Coherence-based fine characterization technology for fractures and its application to Shunbei Area[J]. Natural Gas Exploration and Development, 2018, 41(3):20-25.
|
[16] |
徐红霞, 沈春光, 李斌, 等. 多属性分析技术在碳酸盐岩断溶体预测中的应用[J]. 石油地球物理勘探, 2017, 52(S2):158-163,8.
|
[16] |
Xu H X, Shen C G, Li B, et al. Application of multi-attribute analysis technology in prediction of carbonate fault solution[J]. Oil Geophysical Prospecting, 2017, 52(S2):158-163,8.
|
[17] |
李海英, 陈俊安, 龚伟, 等. 基于多属性融合叠前反演预测超深层断控储集体物性和流体性质[J]. 石油物探, 2022, 61(3):543-555.
|
[17] |
Li H Y, Chen J A, Gong W, et al. Prediction of physical and fluid properties of ultra-deep fault-controlled reservoirs based on multi-attribute fusion prestack inversion[J]. Geophysical Prospecting for Petroleum, 2022, 61(3):543-555.
|
[18] |
陈更生, 谢清惠, 吴建发, 等. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 2022, 46(6):1349-1358.
|
[18] |
Chen G S, Xie Q H, Wu J F, et al. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1349-1358.
|
[19] |
许献磊, 宋照国, 李泽华, 等. 基于GPR与ERT属性信息融合的综合物探方法研究[J]. 地球物理学进展, 2022, 37(3):1330-1341.
|
[19] |
Xu X L, Song Z G, Li Z H, et al. Research on comprehensive geophysical prospecting method based on attribute information fusion of GPR and ERT[J]. Progress in Geophysics, 2022, 37(3):1330-1341.
|
[20] |
薄昕, 徐旺林, 陈小宏, 等. 基于局部熵的LP-PCNN多属性融合裂缝预测方法[J]. 石油物探, 2022, 61(5):821-829.
|
[20] |
Bo X, Xu W L, Chen X H, et al. LP-PCNN multi-attribute fusion fracture prediction method based on local entropy[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):821-829.
|
[21] |
陈国飞, 石颖, 杨会东, 等. 基于优势低频带地震数据的属性融合断层识别方法[J]. 地球物理学报, 2023, 66(3):1232-1243.
|
[21] |
Chen G F, Shi Y, Yang H D, et al. Fault identification method of attribute fusion based on seismic optimized frequency of seismic data[J]. Chinese Journal of Geophysics, 2023, 66(3):1232-1243.
|
[22] |
喻颐, 杨广广, 吕龑, 等. 蚂蚁追踪与分频融合技术在低序级断层解释中的应用——以中台山须家河组致密砂岩气藏为例[J]. 天然气勘探与开发, 2021, 44(4):100-106.
|
[22] |
Yu Y, Yang G G, Lyu Y, et al. An integrating technology of ant tracking and frequency division and its application to interpretation on low-order fault:Examples from Xujiahe tight sandstone gas reservoirs,Zhongtaishan Area,Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(4):100-106.
|
[23] |
曹磊, 蔡峰. 基于地震属性融合技术的火山通道识别研究[J]. 地球物理学进展, 2021, 36(2):559-564.
|
[23] |
Cao L, Cai F. Recognition research of volcanic conduit based on seismic attribute fusion technology[J]. Progress in Geophysics, 2021, 36(2):559-564.
|
[24] |
李占东, 张丽双, 李阳, 等. 基于多次迭代属性融合技术的河道砂刻画——以大庆油田扶余油层Z区为例[J]. 地球物理学进展, 2017, 32(3):1161-1168.
|
[24] |
Li Z D, Zhang L S, Li Y, et al. Channel sand characterization based on the fusion of multiple iterative attributes—A case study of Z area of Fuyu oil layer in Daqing oil field[J]. Progress in Geophysics, 2017, 32(3):1161-1168.
|
[25] |
闫星宇, 李宗杰, 顾汉明, 等. 基于深度卷积神经网络的地震数据溶洞识别[J]. 石油地球物理勘探, 2022, 57(1):1-11,264.
|
[25] |
Yan X Y, Li Z J, Gu H M, et al. Identification of Karst caves in seismic data based on deep convolutional neural network[J]. Oil Geophysical Prospecting, 2022, 57(1):1-11,264.
|
[26] |
路鹏飞, 杜文龙, 李丽, 等. 基于VNet深度学习架构的低序级断层智能识别方法[J]. 石油地球物理勘探, 2022, 57(6):1276-1286,1255.
|
[26] |
Lu P F, Du W L, Li L, et al. Intelligent recognition method of low-grade faults based on VNet deep learning architecture[J]. Oil Geophysical Prospecting, 2022, 57(6):1276-1286,1255.
|
[27] |
杨午阳, 杨佳润, 陈双全, 等. 基于U-Net深度学习网络的地震数据断层检测[J]. 石油地球物理勘探, 2021, 56(4):688-697,669.
|
[27] |
Yang W Y, Yang J R, Chen S Q, et al. Seismic data fault detection based on U-Net deep learning network[J]. Oil Geophysical Prospecting, 2021, 56(4):688-697,669.
|
[28] |
颜世翠. 基于机器学习算法和属性特征双优选的砂体岩性预测方法[J]. 油气地质与采收率, 2022, 29(1):98-106.
|
[28] |
Yan S C. Prediction method of sandstone lithology based on optimized machine learning algorithms and attribute features[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1):98-106.
|
[29] |
田建华, 朱博华, 卢志强, 等. 基于井控多属性机器学习的缝洞型储层预测方法[J]. 油气地质与采收率, 2023, 30(1):86-92.
|
[29] |
Tian J H, Zhu B H, Lu Z Q, et al. Fracture-cavity reservoir prediction based on well-controlled multi-attribute machine learning[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1):86-92.
|
[30] |
蔡国刚, 杨光达, 周艳, 等. 机器学习驱动的地震多属性分析表征扇三角洲沉积[J]. 科学技术与工程, 2021, 21(29):12454-12460.
|
[30] |
Cai G G, Yang G D, Zhou Y, et al. Sedimentary facies characterization of fan delta based on machine learning driven multi-seismic attributes analysis[J]. Science Technology and Engineering, 2021, 21(29):12454-12460.
|
[31] |
杨丽娜, 许胜利, 魏莉, 等. 碳酸盐岩储层裂缝智能预测技术及其应用[J]. 大庆石油地质与开发, 2023, 42(4):131-138.
|
[31] |
Yang L N, Xu S L, Wei L, et al. Intelligent prediction technique and its application for carbonate reservoir fractures[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(4):131-138.
|
[32] |
史长林, 魏莉, 张剑, 等. 基于机器学习的储层预测方法[J]. 油气地质与采收率, 2022, 29(1):90-97.
|
[32] |
Shi C L, Wei L, Zhang J, et al. Reservoir prediction method based on machine learning[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1):90-97.
|
[33] |
Purushothaman G, Karayiannis N B. Quantum neural networks (QNNs):Inherently fuzzy feedforward neural networks[J]. IEEE Transactions on Neural Networks, 1997, 8(3):679-693.
|
[34] |
Benardos P G, Vosniakos G C. Optimizing feedforward artificial neural network architecture[J]. Engineering Applications of Artificial Intelligence, 2007, 20(3):365-382.
|
[1] |
CHEN Geng-Sheng, XIE Qing-Hui, WU Jian-Fa, ZHAO Chun-Duan, XU Er-Si, PAN Yuan-Wei. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1349-1358. |
[2] |
WANG Cheng-Quan, WANG Meng-Hua, ZHOU Jia-Yi, WANG Sheng-Liang, YANG Zhou-Peng, LIU Hui, ZHANG Hong-Wen. Application of multi-attribute fusion in quantitative prediction of reservoirs: A case study of Yangshuiwu buried hill in Langgu sag[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 87-95. |
|
|
|
|