|
|
Critical techniques for sweet spot prediction for tight sandstone reservoirs in the Dongsheng gas field and their application effects |
CAO Shao-He1( ), REN Feng-Ru1, WANG Xiao-Xiao2 |
1. North China Petroleum Bureau,SINOPEC,Zhengzhou 450006,China 2. Xinxing Geophysical Department,Bureau of Geophysical Prospecting,CNPC,Zhuozhou 072750,China |
|
|
Abstract The Xinzhao gas zone of the Dongsheng gas field resides at the junction of three first-order tectonic units:Yishan slope,Yimeng uplift,and Tianhuan depression.Due to the influence of paleogeomorphology and provenance,different channel sediments vary significantly in this zone.The main target layer is the first member of the Shihezi Formation,which hosts a braided river sedimentary system,with tight reservoirs characterized by typical low porosities and permeabilities.The effective sandstone reservoir exhibits a small thickness,pronounced heterogeneity in gas content,and low-resolution seismic data,complicating sweet spot prediction.Hence,this study delved into the critical seismic prediction techniques for sweet spots in braided-river tight sandstone reservoirs.Firstly,the stratigraphic framework was established based on the three-dimensional seismic relative isochronous surface,characterizing the spatial distributions of channel sand bodies at different stages using the relative-spatial-resolution stratal slicing technique.Then,the seismic data were transformed from the time domain to the frequency domain using the wavelet transform time-frequency analysis technique.Based on the analysis of instantaneous spectrum differences in seismic data of different channels,the qualitative gas content prediction was achieved using the low-frequency energy ratio and the ABV absorption attribute,effectively supporting well deployment.Finally,the facies-controlled geostatistical inversion in the depth domain combining logs and seismic data was conducted for quantitative reservoir prediction, guiding the accurate design and optimization of horizontal well trajectories.The application of these techniques has increased the probability of penetration of gas reservoirs in the study area by seven percentage points, demonstrating satisfactory application effects.
|
Received: 13 November 2023
Published: 19 September 2024
|
|
|
|
|
|
Sweet spots prediction technical flow
|
|
Acoustic impedance histogram of H1
|
|
Forward modeling of H1 reservoir in the study area
|
|
Attribute analysis of stratum slice of H1 in the study area
|
|
Instantaneous frequency spectrum analysis of western river channel
|
|
Instantaneous frequency spectrum analysis of eastern river channel
|
|
Low frequency energy ratio plane of western river channel
|
|
ABV absorption attribute of eastern river channel
|
西部河道井 | 目的层 | 气厚/m | 低频能量比 | 东部河道井 | 目的层 | 气厚/m | ABV吸收 | J30-4-P7DY | H1-1+2 | 6.8 | 不符合 | J30-5-P3DY | H1-1+2 | 13.9 | 符合 | H1-3 | 14.2 | H1-3 | 3.4 | J30-4-P9DY | H1-3 | 18.2 | 不符合 | J30-5-P5DY | H1-1+2 | 10.1 | 符合 | J30-4-P14DY | H1-1+2 | 2.8 | 符合 | J30-5-P6DY | H1-2 | 6.0 | 符合 | H1-3 | 7.0 | H1-3 | 4.0 | J30-4-P16DY | H1-3 | 11.2 | 符合 | J30-5-P7DY | H1-3 | 11.3 | 符合 | J30-4-P20DY | H1-1+2 | 10.0 | 符合 | J30-5-P10DY | H1-2+3 | 15.6 | 符合 | J30P2HDY | H1-1+2 | 8.0 | 符合 | J30-5-P11DY | H1-1 | 3.4 | 符合 | H1-3 | 8.2 | H1-3 | 8.6 | J30-3 | H1-1+2 | 12.8 | 符合 | J30-5-P13DY | H1-1+2 | 4.3 | 符合 | H1-3 | 6.2 | H1-3 | 9.5 | J30-4 | H1-2+3 | 17.7 | 符合 | J30-5-P18DY | H1-1 | 7.0 | 不符合 | J30-5 | H1-3 | 10.4 | 符合 | H1-2+3 | 7.7 | J30-8 | H1-2+3 | 21.0 | 符合 | J30-18 | H1-2 | 7.9 | 符合 | J30-14 | H1-2+3 | 27.5 | 符合 | H1-3 | 5.9 | J30-21 | H1-2+3 | 9.8 | 符合 | J30-19 | H1-2+3 | 11.5 | 符合 | J30-23 | H1-1+2 | 8.8 | 符合 | J30-6 | H1-1+2 | 14.7 | 符合 | H1-3 | 7.4 | H1-3 | 13.1 | J154 | H1-2+3 | 13.2 | 符合 | J30-10 | H1-1+2 | 3.8 | 符合 | J150 | H1-2+3 | 7.2 | 符合 | H1-3 | 3.9 | J30-4-2 | H1-1 | 5.2 | 符合 | J30-12 | H1-2+3 | 26.1 | 符合 | H1-2+3 | 9.6 | J79 | H1-1+2 | 8.4 | 不符合 | J30-4-6 | H1-2+3 | 17.0 | 符合 | J153 | H1-2+3 | 8.3 | 符合 | J30-4-8 | H1-1+2 | 12.6 | 符合 | J30 | H1-2 | 3.0 | 符合 | H1-3 | 4.4 | H1-3 | 11.3 | J30-4-11 | H1-2+3 | 5.1 | 不符合 | J30-5-3 | H1-2+3 | 15.3 | 符合 | J30-4-16 | H1-2+3 | 13.4 | 符合 | J30-5-10 | H1-3 | 18.3 | 符合 |
|
Statistical for compliance rate of gas-bearing prediction in sub rivers
|
|
Geostatistical inversion profile of H1
|
[1] |
王云鹏, 苏芮, 毛传龙, 等. 大城凸起煤层地震频率域含气性预测[J]. 新疆石油地质, 2020, 41(4):422-429.
|
[1] |
Wang Y P, Su R, Mao C L, et al. Prediction of gas bearing property in seismic frequency domain for coal beds in Dacheng swell[J]. Xinjiang Petroleum Geology, 2020, 41(4):422-429.
|
[2] |
杨宏伟, 李斌, 钱志, 等. 地震时频分析技术在滨浅湖沉积层序研究中的应用[J]. 四川地质学报, 2018, 38(2):345-349.
|
[2] |
Yang H W, Li B, Qian Z, et al. The application of seismic time-frequency analysis technology to the study of shore and shallow lacustrine sedimentary sequence[J]. Acta Geologica Sichuan, 2018, 38(2):345-349.
|
[3] |
张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6):1386-1393.
|
[3] |
Zhang H, Xin Y G, Tian H. Gas-bearing property prediction of Leikoupo Formation in the northwest Sichuan Basin based on the theory of two-phase media[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1386-1393.
|
[4] |
陈珊, 陆蓉, 刘力辉, 等. 薄互层干涉对叠前AVO属性的影响分析[J]. 地学前缘, 2020, 27(4):98-109.
|
[4] |
Chen S, Lu R, Liu L H, et al. Analysis of the influence of thin interbed interference on prestack AVO attributes[J]. Earth Science Frontiers, 2020, 27(4):98-109.
|
[5] |
刘仕友, 张迎朝, 李洋森, 等. 远近道差异属性在琼东南盆地深水区AVO分析中应用[J]. 煤田地质与勘探, 2020, 48(1):197-202.
|
[5] |
Liu S Y, Zhang Y Z, Li Y S, et al. Application of far and near trace attributes for AVO analysis in deep water area in Qiongdongnan Basin[J]. Coal Geology & Exploration, 2020, 48(1):197-202.
|
[6] |
杨勤林, 李洋, 曹少蕾, 等. 松辽盆地苏家屯区块致密砂岩岩石物理分析和含气性预测[J]. 天然气地球科学, 2020, 31(4):578-585.
|
[6] |
Yang Q L, Li Y, Cao S L, et al. Rock physics analysis and gas-bearing prediction of tight clastic reservoir in Sujiatun block,Songliao Basin[J]. Natural Gas Geoscience, 2020, 31(4):578-585.
|
[7] |
韩刚, 高红艳, 龙凡, 等. 叠前反演在西湖凹陷致密砂岩储层“甜点” 预测中的应用[J]. 石油物探, 2021, 60(3):471-478.
|
[7] |
Han G, Gao H Y, Long F, et al. Prestack elastic inversion for sweet-spot prediction in tight reservoirs in Xihu Sag[J]. Geophysical Prospecting for Petroleum, 2021, 60(3):471-478.
|
[8] |
李瑞磊, 杨勤林, 田建华, 等. 松辽盆地龙凤山气田致密砂岩含气性预测研究[J]. 石油物探, 2017, 56(6):874-881.
|
[8] |
Li R L, Yang Q L, Tian J H, et al. Tight sandstone gas prediction in the Longfeng Mountain gas field of Songliao Basin,China[J]. Geophysical Prospecting for Petroleum, 2017, 56(6):874-881.
|
[9] |
张德明, 刘志刚, 臧殿光, 等. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3):645-652.
|
[9] |
Zhang D M, Liu Z G, Zang D G, et al. Prediction and identification of gas-bearing properties of tight sandstone reservoirs through simultaneous pre-stack inversion:A case study of block S in Sulige gas field[J]. Geophysical and Geochemical Exploration, 2022, 46(3):645-652.
|
[10] |
凌云, 林鸿梅, 张红杰, 等. 层序地层学与局域三维地震解释[J]. 石油物探, 2021, 60(5):773-783.
|
[10] |
Ling Y, Lin H M, Zhang H J, et al. Sequence stratigraphy and local three-dimensional seismic interpretation[J]. Geophysical Prospecting for Petroleum, 2021, 60(5):773-783.
|
[11] |
刘喜武, 宁俊瑞. 地震时频属性及其在油气地震地质技术中应用的综述[J]. 勘探地球物理进展, 2009, 32(1):18-22,83.
|
[11] |
Liu X W, Ning J R. A review of time-frequency attributes and their applications in seismic data interpretation for oil & gas geology[J]. Progress in Exploration Geophysics, 2009, 32(1):18-22,83.
|
[12] |
邓继新, Han Dehua, 王尚旭. 基于正演模型的储层谱分解响应特征分析[J]. 石油学报, 2008, 29(4):539-543.
|
[12] |
Deng J X, Han D H, Wang S X. Analysis on spectral decomposition response of reservoir based on forward modeling[J]. Acta Petrolei Sinica, 2008, 29(4):539-543.
|
[1] |
HE Xi-Peng, LIU Ming, XUE Ye, LI Yan-Jing, HE Gui-Song, MENG Qing-Li, ZHANG Yong, LIU Hao-Juan, LAN Jia-Da, YANG Fan. Practices and future research directions of geophysical exploration for normal-pressure shale gas in complex structural areas,southeastern Chongqing[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 314-326. |
[2] |
LI Lu-Lu, JIANG Guo-Yu, LIU Tao, HE Yan, ZHANG Yong-Bo. Geophysical identification of Cretaceous reservoirs in the Shinan area, Junggar Basin[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 334-341. |
|
|
|
|