|
|
Development of a nodal rotational seismometer with a micro-electro-mechanical system sensor and testing of H/V spectral ratios |
JIA Song1( ), HE Zhan-Xiang2,3,4, YANG Hui4,3,2, YAO Yong-Chao2,3,4, WANG Cai-Xia1( ) |
1. School of Applied Science, Beijing Information Science & Technology University, Beijing 100192, China 2. Department of Earth and Space Science, Southern University of Science and Technology, Shenzhen 518055, China 3. Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology, Southern University of Science and Technology, Shenzhen 518055, China 4. Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract In response to the increasing demand for large-scale field seismic acquisition, this study developed a low-cost multifunctional nodal rotational seismometer (RBWL) with a micro-electro-mechanical system (MEMS) sensor, considering the functionality, economic feasibility, and the ease of arrangement. The RBWL employs a low-cost and low-power MEMS sensor to acquire seismic signals, involving three-component translational motions (Tx,Ty,Tz) and three-component rotational motions (Rx,Ry,Rz). To reduce the impacts of environmental factors on measurements, the system of the RBWL automatically records real-time information including temperature and attitude while performing compensation correction on the measurement results. For real-time monitoring and data transmission at acquisition nodes, the system establishes a data transmission link integrating 4G, cloud, and client, with the measured maximum data transmission rate up to 100 Mbps. The testing of H/V spectral ratios verifies the system functions and principal performance parameters of the RBWL and its effectiveness in engineering physical exploration.
|
Received: 01 April 2024
Published: 08 January 2025
|
|
|
|
|
|
Schematic diagram of the hardware system of the nodal rotary seismometer
|
技术参数 | 取值范围 | 最大线性加速度/g | ±2 | 线性加速度最高分辨率/(LSB·g-1) | 16384 | 角速度最高分辨率/(rad·s-1) | 4E-5 | 姿态角度量程/(°) | x、y:±180,z:±90 | 温度量程/℃ | -40~85 | 频率响应范围/Hz | 7~500 | 采样率/Hz | 100、200、500、1000 | 工作温度/℃ | -40~85 | 实时传输连续工作时间@25℃/d | 3 | 存储容量/G | 64 | 长、宽、高/mm | 100×75×120 | 功耗/W | <2.5 |
|
RBWL system main technical parameters
|
|
Schematic of accelerometer array PCB layout
|
|
Schematic diagram of data transmission
|
|
RBWL client software schematic
|
|
Schematic diagram of system software functional modules
|
|
Schematic diagram of data display and equipment status monitoring interface
|
|
Schematic of the data visualization interface (acceleration, angular velocity, attitude angle, magnetic field)
|
|
Parameter configuration and data display interface diagram
|
仪器名称 | 仪器类型 | 观测类型 | 观测分量 | 精度 | 部署难度 | 功耗 | 体积 | 质量 | RBWL | MEMS | 平动+旋转 | 6 | 中 | 低 | 低 | 小 | 小 | 6DOF | 速度计阵列 | 平动+旋转 | 6 | 高 | 中 | 中 | 大 | 大 | R-1 | 电化学 | 旋转 | 3 | 高 | 中 | 高 | 大 | 大 | G-Ring | 激光陀螺仪 | 旋转 | 3 | 超高 | 超高 | 超高 | 超大 | 超大 | FOSREM | 光纤陀螺仪 | 旋转 | 3 | 高 | 中 | 高 | 大 | 大 | Titan | 加速度计 | 平动 | 3 | 中 | 中 | 低 | 中 | 中 |
|
Comparison of RBWL with similar rotating component measurement devices
|
|
Schematic diagram of the test site arragement
|
fr/Hz | Lw最 小值 /s | 最小有 效周期 数/nc | 最小窗 口数 | 最小有用 信号持续 时间/s | 建议的最 短记录持 续时间/min | 5 | 5 | 200 | 10 | 40 | 3 | 10 | 5 | 200 | 10 | 20 | 2 |
|
The relationship between resonance frequency and recording duration
|
|
H/V spectral ratio curves a—H/V curves plotted for the three acceleration components of the RBWL;b—H/V curves plotted for the rotational components calculated by RBWL;c—H/V curves plotted for the three-axis data of the nodal seismometer
|
fr/Hz | h/m | 误差/% | 44.82 | 0.62 | 3.3 | 45.62 | 0.61 | 1.7 | 45.94 | 0.61 | 1.7 |
|
Estimation results of soil thickness h
|
[1] |
Hudnut K W. Earthquake geodesy and hazard monitoring[J]. Review of Geophysics, 33(S1): 1995,249-255.
|
[2] |
严炎, 崔一飞, 周开来, 等. 基于地震动信号分析的地质灾害过程重构方法研究与应用[J]. 工程地质学报, 2021, 29(1):125-136.
|
[2] |
Yan Y, Cui Y F, Zhou K L, et al. Research and application of geological hazards process reconstruction based on seismic signal analysis[J]. Journal of Engineering Geology, 2021, 29(1):125-136.
|
[3] |
刘庚, 刘文义, 路珍, 等. 地面运动旋转分量观测综述——以中国台湾地区旋转运动观测为例[J]. 地球物理学进展, 2020, 35(2):422-432.
|
[3] |
Liu G, Liu W Y, Lu Z, et al. Review of the measurement of rotational component in ground motions:A case study of rotating motion observation in Taiwan,China[J]. Progress in Geophysics, 2020, 35(2):422-432.
|
[4] |
王赟, 孙丽霞, 李栋青, 等. 勘探地震中的六分量观测[J]. 石油物探. 2021, 60(1):13-24.
|
[4] |
Wang Y, Sun L X, Li D Q, et al. Six-component observation for exploration seismology[J]. Geophysical Prospecting for Petroleum. 2021, 60(1):13-24.
|
[5] |
Zhao B L. Application of multi-component seismic exploration in the exploration and production of lithologic gas reservoirs[J]. Petroleum Exploration and Development, 2008, 35(4):397-412.
|
[6] |
王丹, 魏水建, 贾跃玮, 等. 地热资源地震勘探方法综述[J]. 物探与化探, 2015, 39(2):253-261.
|
[6] |
Wang D, Wei S J, Jia Y W, et al. An overview of methods for geothermal seismic exploration[J]. Geophysical and Geochemical Exploration, 2015, 39(2):253-261.
|
[7] |
秦林鹏, 王赟, 张东明, 等. 六分量地震观测在工程勘查中的应用试验[J]. 地球物理学报, 2024, 67(1):308-317.
|
[7] |
Qin L P, Wang Y, Zhang D M, et al. A case study:Application of six-component seismic observations in urban engineering investigation[J]. Chinese Journal of Geophysics, 2024, 67(1):308-317.
|
[8] |
岩巍. 地震勘探节点采集系统设计的要点[J]. 物探与化探, 2022, 46(3):570-575.
|
[8] |
Yan W. Key points of the design of a nodal acquisition system for seismic exploration[J]. Geophysical and Geochemical Exploration, 2022, 46(3):570-575.
|
[9] |
陈畅, 王赟, 郭高源, 等. 几种旋转地震仪在深部地下巷道的观测对比[J]. 地球物理学报, 2022, 65(12):4569-4582.
|
[9] |
Chen C, Wang Y, Guo G Y, et al. Deep underground observation comparison of rotational seismometers[J]. Chinese Journal of Geophysics, 2022, 65(12):4569-4582.
|
[10] |
Li Z H, Van der Baan M. Tutorial on rotational seismology and its applications in exploration geophysics[J]. Geophysics, 2017, 82(5):W17-W30.
|
[11] |
Nawrocki D, Mendecki M J, Teper L. Estimation of the resonance frequency of rotational and translational signals evoked by mining-induced seismicity[J]. Frontiers in Earth Science, 2024, 12:2296-6463.
|
[12] |
Huang B S. Ground rotational motions of the 1999 Chi-Chi,Taiwan earthquake as inferred from dense array observations[J]. Geophysical Research Letters, 2003, 30(6):1307-1310.
|
[13] |
Lin C J, Liu C C, Lee W H K. Recording rotational and translational ground motions of two TAIGER explosions in northeastern Taiwan on 4 March 2008[J]. Bulletin of the Seismological Society of America, 2009, 99(2B):1237-1250.
|
[14] |
李栋青, 王赟, 孙丽霞. 差分法计算地震动旋转分量[J]. 地球科学, 2021, 46(1):369-380.
|
[14] |
Li D Q, Wang Y, Sun L X. Calculating rotational components of ground motions by finite difference method[J]. Earth Science, 2021, 46(1):369-380.
|
[15] |
秦彤威, 王少曈, 冯宣政. 微动H/V谱比方法[J]. 地球与行星物理论评, 2021, 52(6):587-622.
|
[15] |
Qin T W, Wang S T, Feng X Z, Lu L Y. 2021. A review on microtremor H/V spectral ratio method[J]. Reviews of Geophysics and Planetary Physics, 52(6):587-622.
|
[16] |
秦彤威, 冯宣政, 王少曈, 等. Rayleigh波ZH幅度比(椭率)研究综述[J]. 地球物理学进展, 2021, 36(1):39-66.
|
[16] |
Qin T W, Feng X Z, Wang S T, et al. Review on rayleigh wave ZH amplitude ratio(ellipticity)[J]. Progress in Geophysics, 2021, 36(1):39-66.
|
[17] |
Gosar A. A microtremor HVSR study of the seismic site effects in the area of the town of brežice (se slovenia)[J]. Acta Geotechnica Slovenica, 2009, 6:31-45.
|
[18] |
Arai H, Tokimatsu K. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bulletin of the Seismological Society of America, 2004, 94(1):53-63.
|
[19] |
Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Railway Technical Research Institute,Quarterly Reports, 1989, 30(1):25-33.
|
[20] |
Nogoshi M, Igarashi T. On the amplitude characteristics of micro-tremor,Part II[J]. Journal of the Seismological Society of Japan, 1971, 24(1):26-40.
|
[21] |
Parolai S, Galiana-Merino J J. Effect of transient seismic noise on estimates of H/V spectral ratios[J]. Bulletin of the Seismological Society of America, 2006, 96(1):228-236.
|
[22] |
Fäh D, Kind F, Giardini D. Inversion of local S-wave velocity structures from average H/V ratios,and their use for the estimation of site-effects[J]. Journal of Seismology, 2003, 4(7):449-467.
|
[23] |
Bonnefoy-Claudet S, Cotton F, Bard P-Y. The nature of noise wavefield and its applications for site effects studies[J]. Earth-Science Reviews, 2006, 79(3-4):205-227.
|
[24] |
Bonnefoy-Claudet S, Köhler A, Cornou C, et al. Effects of love waves on microtremor H/V ratio[J]. Bulletin of the Seismological Society of America, 2008, 98(1):288-300.
|
[25] |
Bard P Y, Acerra C, Aguacil G, et al. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements,processing and interpretation[J]. Bulletin of Earthquake Engineering, 2008, 6(4):1-2.
|
[26] |
Abu Z N, Corradini E, Bignardi S, et al. The passive seismic technique ‘HVSR’ as a reconnaissance tool for mapping paleo-soils:The case of the pilastri archaeological site,northern italy[J]. Archaeol ogical Prospection., 2017, 24(3):245-258.
|
|
|
|