|
|
Strike-slip fault system in the Erbatai area, Tarim Basin |
ZHANG Jia-Chang1( ), LI Tao1( ), LIANG Hong-Gang2, FEI E1, SUN Zhi-Yuan1, YUE Tong1 |
1. School of Geosciences, Yangtze University, Wuhan 430100, China 2. Exploration and Development Research Institute, Northwest Oil Field Company, SINOPEC, Urumqi 830011, China |
|
|
Abstract In structural confirmation for oil and gas exploration, ascertaining the distributions of faults remains a challenge and priority in seismic data interpretation. The most complex fault combinations can be observed in strike-slip fault systems. This study investigated the Erbatai area that hosts a complex Luntai strike-slip fault system in the Tarim Basin. First, the background noise was reduced using the dip angle plus azimuth scanning and the structure-oriented filtering. Then, a multi-level nesting technology was developed by integrating attributes like coherence cube, ant-tracking attribute, and maximum likelihood. Using the technology, this study identified and statistically analyzed 41 faults in the Erbatai area for their geometric development characteristics, including strike, dip, dip angle, and fault throw. Furthermore, this study determined the complex fault combinations within the strike-slip fault system. The findings indicate that the Erbatai area develops a dominant nearly EW-trending strike-slip fault zone and a NE-trending secondary fault zone. These faults are extensional fractures caused by left-lateral torsion, manifested as right-stepping en echelon normal faults. Overall, this study can be referenced for assessing structural hydrocarbon reservoirs in the Erbatai area.
|
Received: 15 January 2024
Published: 08 January 2025
|
|
|
|
|
|
Flow chart of seismic fine interpretation technology under strike-slip fault system
|
|
Regional location map of the Erbatai area
|
|
Original seismic data (a) and processed seismic data (b) in Erbatai area
|
|
Seismic section of Inline1872 survey line in Erbatai area
|
|
Comparison of top boundary layer attributes of three Suweiyi Formations along Inline1872 survey line in Erbatai area
|
|
Multi-level nested fault interpretation diagram
|
|
Coherence attribute recognition along the top boundary of Suweiyi Formation in Erbatai area
|
|
Ant tracking attribute recognition along the top boundary of Suweiyi Formation in Erbatai area
|
|
Likelihood attribute recognition along the top boundary of Suweiyi Formation along Inline1857 survey line in Erbatai area
|
|
3D seismic data of Erbatai area
|
|
Fault classification diagram of Erbatai area
|
|
Erbatai fault evolution pattern diagram
|
[1] |
杨勇, 汤良杰, 刁新东, 等. 塔里木盆地雅克拉断凸断裂差异变形特征及其控制因素[J]. 石油与天然气地质, 2018, 39(1):89-97.
|
[1] |
Yang Y, Tang L J, Diao X D, et al. Differential deformation and its control mechanism of fault structures in Yakela fault-salient,Tarim Basin[J]. Oil & Gas Geology, 2018, 39(1):89-97.
|
[2] |
刘睿, 黄晓波, 汪晶, 等. 渤海湾沙北地区共轭走滑断裂带特征及其对油气的控制作用[J]. 东北石油大学学报, 2018, 42(2):43-50,119-120.
|
[2] |
Liu R, Huang X B, Wang J, et al. Characteristics of conjugate strike-slip fault zone and its control over hydrocarbons in Shabei area of Bohai Bay[J]. Journal of Northeast Petroleum University, 2018, 42(2):43-50,119-120.
|
[3] |
武小宁, 钟厚财, 林煜, 等. 中拐凸起走滑断裂发育特征及对成藏的控制作用[J]. 断块油气田, 2023, 30(2):286-293.
|
[3] |
Wu X N, Zhong H C, Lin Y, et al. The development characteristics of strike-slip faults and its control effect on reservoir accumulation in Zhongguai Uplift[J]. Fault-Block Oil & Gas Field, 2023, 30(2):286-293.
|
[4] |
吴梅莲, 刘永福, 彭鹏, 等. 轮南古潜山走滑断裂特征及其对油气成藏的影响[J]. 断块油气田, 2021, 28(4):456-462.
|
[4] |
Wu M L, Liu Y F, Peng P, et al. Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation[J]. Fault-Block Oil & Gas Field, 2021, 28(4):456-462.
|
[5] |
管树巍, 梁瀚, 姜华, 等. 四川盆地中部主干走滑断裂带及伴生构造特征与演化[J]. 地学前缘, 2022, 29(6):252-264.
|
[5] |
Guan S W, Liang H, Jiang H, et al. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin,southWestern China,and associated structures[J]. Earth Science Frontiers, 2022, 29(6):252-264.
|
[6] |
冯建伟, 郭宏辉, 汪如军, 等. 塔里木盆地塔北地区深层走滑断裂分段性成因机制[J]. 地球科学, 2023, 48(7):2506-2519.
|
[6] |
Feng J W, Guo H H, Wang R J, et al. Segmentation genesis mechanism of strike-slip fracture of deep carbonate rocks in tabei area,Tarim basin[J]. Earth Science, 2023, 48(7):2506-2519.
|
[7] |
陈更生, 谢清惠, 吴建发, 等. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 2022, 46(6):1349-1358.
|
[7] |
Chen G S, Xie Q H, Wu J F, et al. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1349-1358.
|
[8] |
陈永芮, 张军华, 林承焰, 等. 一种基于小波优势频带的深层—超深层碳酸盐岩走滑断裂识别方法及应用[J]. 地球物理学进展, 2021, 36(5):1941-1947.
|
[8] |
Chen Y R, Zhang J H, Lin C Y, et al. The method and application of minor strike-slip faults identification about deep and ultra-deep carbonate reservoir based on wavelet transform sensitive frequency[J]. Progress in Geophysics, 2021, 36(5):1941-1947.
|
[9] |
陈珂磷, 井翠, 杨扬, 等. 频率域多尺度断裂检测技术在长宁页岩气勘探中的应用[J]. 断块油气田, 2022, 29(3):289-294.
|
[9] |
Chen K L, Jing C, Yang Y, et al. Application of frequency domain multi-scale fault detection technique in shale gas exploration in Changning region[J]. Fault-Block Oil & Gas Field, 2022, 29(3):289-294.
|
[10] |
刘军, 龚伟, 黄超, 等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报, 2022, 41(4):1-11.
|
[10] |
Liu J, Gong W, Huang C, et al. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geolo-gical Science and Technology, 2022, 41(4):1-11.
|
[11] |
孙致远. 基于优势频带地震属性融合的走滑断裂识别研究——以准噶尔盆地莫西庄油田为例[D]. 荆州: 长江大学, 2024.
|
[11] |
Sun Z Y. Research on identification of strike-slip faults based on dominant frequency band seismic multi-attribute:A case study of Moxizhuang Oilfield,Junggar Basin[D]. Jingzhou: Yangtze University, 2024.
|
[12] |
马峰, 汪泽成, 雷明, 等. 川中海相碳酸盐岩层系小型走滑断裂地震识别[J]. 地球科学, 2023, 48(6):2204-2220.
|
[12] |
Ma F, Wang Z C, Lei M, et al. Seismic identification of small strike-slip faults in marine carbonate strata in paleouplift area of central Sichuan Basin[J]. Earth Science, 2023, 48(6):2204-2220.
|
[13] |
李飞跃, 王涛, 曾清波, 等. 基于构造导向的高清似然属性在白云凹陷深层断裂预测中的应用[J]. 石油物探, 2023, 62(1):163-172.
|
[13] |
Li F Y, Wang T, Zeng Q B, et al. Application of high-definition likelihood attributes based on structure orientation in the prediction of deep faults in Baiyun Sag[J]. Geophysical Prospecting for Petroleum, 2023, 62(1):163-172.
|
[14] |
赵凤全, 崔德育, 康婷婷, 等. 构造导向滤波技术在断裂识别中的应用[J]. 石油地球物理勘探, 2018, 53(S1):214-218,227,15-16.
|
[14] |
Zhao F Q, Cui D Y, Kang T T, et al. Fault identification with structure-oriented filtering[J]. Oil Geophysical Prospecting, 2018, 53(S1):214-218,227,15-16.
|
[15] |
吴晨骁. 构造导向滤波技术在准噶尔盆地滴南凸起南带石炭系小断裂识别的应用[J]. 石化技术, 2021, 28(9):26-27.
|
[15] |
Wu C X. Application of structure-guided filtering technique in identification of small faults of Carboniferous system in the southern belt of Dinan Uplift,Junggar Basin[J]. Petrochemical Industry Technology, 2021, 28(9):26-27.
|
[16] |
谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5):1295-1302.
|
[16] |
Xie Q H, Jiang L W, Zhao C D, et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1295-1302.
|
[17] |
庄益明, 张兴平, 王琦, 等. 基于构造导向滤波下的蚂蚁追踪技术的应用与实践[J]. 煤炭技术, 2018, 37(9):150-152.
|
[17] |
Zhuang Y M, Zhang X P, Wang Q, et al. Application and practice of ant tracking technology based on structure oriented filtering[J]. Coal Technology, 2018, 37(9):150-152.
|
[18] |
赵小辉, 于宝利, 曹小璐. 属性融合技术在微小断裂识别中的应用[J]. 石油地球物理勘探, 2017, 52(S2):164-169,8.
|
[18] |
Zhao X H, Yu B L, Cao X L. Minor fault identification with seismic multi-attribute fusion[J]. Oil Geophysical Prospecting, 2017, 52(S2):164-169,8.
|
[19] |
马德波, 赵一民, 张银涛, 等. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例[J]. 天然气地球科学, 2018, 29(6):817-825.
|
[19] |
Ma D B, Zhao Y M, Zhang Y T, et al. Application of maximum likelihood attribute to fault identification:A case study of Rewapu block in Halahatang area,Tarim Basin,NW China[J]. Natural Gas Geoscience, 2018, 29(6):817-825.
|
[20] |
王晓阳, 霍晗勇, 丁立明, 等. ZC地区断裂检测方法及特征研究[J]. 石油物探, 2023, 62(S1):118-125.
|
[20] |
Wang X Y, Huo H Y, Ding L M, et al. Study on fault detection method and characteristics in ZC area[J]. Geophysical Prospecting for Petroleum, 2023, 62(S1):118-125.
|
[21] |
甄宗玉, 陈华靖, 张鹏志, 等. 基于特定反射系数压制与最大似然属性的断层识别方法[J]. 断块油气田, 2021, 28(3):335-339.
|
[21] |
Zhen Z Y, Chen H J, Zhang P Z, et al. The fault identification method based on specific reflection coefficient suppression and maximum likelihood attribute[J]. Fault-Block Oil & Gas Field, 2021, 28(3):335-339.
|
[22] |
何松高, 邓尚, 刘雨晴, 等. 克拉通内走滑断裂空间结构及派生构造新样式:以塔里木盆地顺北12号断裂为例[J]. 地球科学, 2023, 48(6):2136-2150.
|
[22] |
He S G, Deng S, Liu Y Q, et al. New structural style of spatial architecture and derived structure of intracratonic strike-slip faults:A case study of Shunbei No.12 fault,Tarim Basin[J]. Earth Science, 2023, 48(6):2136-2150.
|
[23] |
吴家安, 董百会, 唐大卿, 等. 塔河地区断裂构造样式及其演化[J]. 复杂油气藏, 2022, 15(1):1-7.
|
[23] |
Wu J A, Dong B H, Tang D Q, et al. Structure style and evolution of faults in Tahe area[J]. Complex Hydrocarbon Reservoirs, 2022, 15(1):1-7.
|
[24] |
张仲培, 徐勤琪, 刘士林, 等. 塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J]. 石油实验地质, 2023, 45(4):761-769.
|
[24] |
Zhang Z P, Xu Q Q, Liu S L, et al. Characteristics of NE strike-slip fault system in the eastern section of Bachu-Maigaiti area,Tarim Basin and its oil-gas geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4):761-769.
|
[25] |
冯志强, 李萌, 郭元岭, 等. 中国典型大型走滑断裂及相关盆地成因研究[J]. 地学前缘, 2022, 29(6):206-223.
|
[25] |
Feng Z Q, Li M, Guo Y L, et al. Genetic analysis of typical strike-slip faults and related basins in China[J]. Earth Science Frontiers, 2022, 29(6):206-223.
|
[26] |
梁瀚, 唐浩, 冉崎, 等. 四川盆地川中地区走滑断裂的分布、类型与成因[J]. 地质学报, 2023, 97(8):2609-2620.
|
[26] |
Liang H, Tang H, Ran Q, et al. The distribution,type and origin of the strike-slip faults in the central Sichuan basin[J]. Acta Geologica Sinica, 2023, 97(8):2609-2620.
|
[27] |
吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4):444-452.
|
[27] |
Lyu H T, Zhang S N, Ma Q Y. Classification and formation mechanism of fault systems in the central and northern Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(4):444-452.
|
[28] |
罗小龙, 汤良杰, 谢大庆, 等. 塔里木盆地雅克拉断凸走滑作用及其形成机理[J]. 石油与天然气地质, 2013, 34(2):257-263.
|
[28] |
Luo X L, Tang L J, Xie D Q, et al. Strike-slip movement and its genetic mechanism in Yakela faulted salient,the Tarim Basin[J]. Oil & Gas Geology, 2013, 34(2):257-263.
|
[29] |
张红波, 周雨双, 沙旭光, 等. 塔里木盆地顺北5号走滑断裂隆起段发育特征与演化机制[J]. 石油与天然气地质, 2023, 44(2):321-334.
|
[29] |
Zhang H B, Zhou Y S, Sha X G, et al. Development characteristics and evolution mechanism of the uplifted segment of the No.5 strike-slip fault zone in Shunbei area,Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2):321-334.
|
[30] |
袁丹丹. 轮台断裂带特征及控藏作用研究[D]. 东营: 中国石油大学(华东), 2021.
|
[30] |
Yuan D D. Study on characteristics and reservoir control of Luntai fault zone[D]. Dongying: China University of Petroleum (Huadong), 2021.
|
[31] |
王峰. 塔北隆起东部地质结构与构造演化[D]. 北京: 中国地质大学(北京), 2018.
|
[31] |
Wang F. Geological structure and tectonic evolution in eastern Tabei uplift[D]. Beijing: China University of Geosciences, 2018.
|
[1] |
YAO Ming. A fault extraction technique based on structure-oriented filtering and its application[J]. Geophysical and Geochemical Exploration, 2024, 48(5): 1313-1321. |
[2] |
YUAN Xiao-Man, LI Xiang-Wen, ZHANG Jie, DAN Guang-Jian, LU Zhong-Yuan, HAN Chong-Yang, ZHANG Lei, XU Jian-Yang. Prediction of oil column heights in fault-controlled tabular reservoirs through time-frequency analysis based on improved generalized S-transform[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 768-776. |
|
|
|
|