|
|
Adaptive prestack inversion method based on quadratic encoder-decoder network |
SHAN Bo1,2( ), XING Yu-Xin1,2( ), ZHANG Fan-Chang3, LI Zhi-Wei1,2, CHEN Mo1,2 |
1. Oil & Gas Resources Survey, China Geological Survey, Beijing 100083, China 2. Key Laboratory of Unconventional Oil and Gas, China Geological Survey, Beijing 100083, China 3. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China |
|
|
Abstract AVO inversion, based on the Zoeppritz equation, extracts various hidden petrophysical parameters from pre-stack seismic data. In seismic data, angle information is recorded in the form of offset values, and converting between offset values and angles is prone to generate errors. In addition, using the same approximate formula for different acreage types may lead to reduced applicability due to varying actual geological conditions. The exact Zoeppritz equation will lead to increased computational demands due to its high complexity. Therefore, this study developed an adaptive prestack inversion method based on the quadratic Encoder-Decoder network. This inversion method used the high feature and relationship extraction abilities of deep learning to replace traditional relationships, thereby reducing the angle errors and adapting to varying acreage types and geological conditions. The quadratic Encoder-Decoder network used a quadratic algorithm as the optimization method, maximizing the efficiency of the standard Encoder-Decoder structure. Additionally, the Xavier initialization method was incorporated to enhance the randomness of model initialization, thus improving the robustness of the network. The results indicate that the quadratic Encoder-Decoder network, selected through orthogonal experiments, outperforms the single-decoder network in prediction and exhibits greater consistency with actual log curves. The P-wave velocity, S-wave velocity, and density profiles obtained from inversion are consistent with the geological conditions of the study area, exhibit strong lateral continuity, and can effectively achieve high-precision prestack inversion.
|
Received: 29 May 2024
Published: 26 February 2025
|
|
Corresponding Authors:
XING Yu-Xin
|
|
|
|
|
Pre-stack inversion training and prediction flow of quadratic Encoder-Decoder network
|
|
Quadratic Encoder-Decoder network structure
|
|
Quadratic Encoder-Decoder network training flow
|
网络类型 | 单层时间复杂度 | 全连接神经网 | O(M×N) | LSTM | O(T×h2) | CNN | O(L2×K2×Cin×Cout) | Self-Attention | O(T2×d) |
|
Time complexity of different neural networks
|
|
Partially angle-stacked seismic profile
|
因子 | 水平 | 1 | 2 | 3 | 4 | A)Encoder参数量 | 0.2 | 0.3 | 0.4 | 0.6 | B)Decoder层数 | 1 | 2 | 3 | 4 | C)Decoder维度 | 64 | 128 | 256 | 512 | D)优化算法 | Adam | 二次型 | | | E)Xavier初始化 | 是 | 否 | | |
|
Quadratic Encoder-Decoder network inversion factors table
|
| 因子 | A | B | C | D | E | 较优水平 | A3 | B2 | C3 | D2 | E1 | 因子主次 | 4 | 3 | 1 | 2 | 5 |
|
Analysis of experimental results of quadratic Encoder-Decoder network inversion
|
|
Prediction profile and prediction curve of quadratic Encoder-Decoder network and RNN through well Te1
|
方法 | 相对误差/% | 相关系数 | 训练时长/s | 二次编解码网络 | 4.12 | 0.932 | 5.17 | 单解码循环神经网络 | 9.28 | 0.845 | 4.86 |
|
Inversion accuracy and efficiency of different networks
|
|
Original seismic profile through Te2 well
|
|
Results of quadratic Encoder-Decoder network and conventional prestack inversion through Te2 well
|
方法 | 纵波速度 /(m·s-1) | 横波速度 /(m·s-1) | 密度 /(kg·m-3) | 二次编解码网络 | 0.872 | 0.870 | 0.863 | 常规同时反演方法 | 0.883 | 0.879 | 0.871 |
|
Correlation coefficients of inversion results by different methods
|
[1] |
Zoeppritz K. On the reflection and propagation of seismic waves at discontinuities[J]. Erdbebenwellen VII B,1919:66-84.
|
[2] |
Bortfeld R. Approximations to the reflection and transmission coefficients of plane longitudinal and transverse WAVES[J]. Geophysical Prospecting, 1961, 9(4):485-502.
|
[3] |
Aki K, Richards P G. Quantitative seismology:Theory and methods[M]. San Francisco: Freeman W H,1980:133-154.
|
[4] |
Shuey R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4):609.
|
[5] |
Fatti J L, Smith G C, Vail P J, et al. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the geostack technique[J]. Geophysics, 1994, 59(9):1362-1376.
|
[6] |
Goodway B, Chen T W, Downton J. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; “λρ”,“μρ”,&“λ/μ fluid stack”,from P and S inversions[C]// SEG Technical Program Expanded Abstracts 1997.Society of Exploration Geophysicists,1997:148-151.
|
[7] |
Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987, 35(9):993-1014.
|
[8] |
宗兆云, 印兴耀, 张峰, 等. 杨氏模量和泊松比反射系数近似方程及叠前地震反演[J]. 地球物理学报, 2012, 55(11):3786-3794.
|
[8] |
Zong Z Y, Yin X Y, Zhang F, et al. Reflection coefficient equation and pre-stack seismic inversion with Young’s modulus and Poisson ratio[J]. Chinese Journal of Geophysics, 2012, 55(11):3786-3794.
|
[9] |
宋晓雨. 准噶尔盆地三叠系致密砂岩甜点地震预测[D]. 东营: 中国石油大学(华东), 2020.
|
[9] |
Song X Y. Earthquake prediction of Triassic tight sandstone dessert in Junggar basin[D]. Dongying: China University of Petroleum (Huadong), 2020.
|
[10] |
Zhang F C, Yang J Y, Li C H, et al. Direct inversion for reservoir parameters from prestack seismic data[J]. Journal of Geophysics and Engineering, 2020, 17(6):993-1004.
|
[11] |
宋宝山. 多波AVO叠前反演及应用研究[D]. 北京: 中国石油大学(北京), 2021.
|
[11] |
Song B S. Multi-wave AVO prestack inversion and its application[D]. Beijing: China University of Petroleum (Beijing), 2021.
|
[12] |
Zhou L, Liu X Y, Li J Y, et al. Robust AVO inversion for the fluid factor and shear modulus[J]. Geophysics, 2021, 86(4):R471-R483.
|
[13] |
范晓辉, 杨景阳, 单博. 剪切模量和密度反射系数近似方程及叠前地震反演[J]. 石油物探, 2022, 61(5):830-841.
|
[13] |
Fan X H, Yang J Y, Shan B. Approximate equations of shear modulus and density reflection coefficient and prestack seismic inversion[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):830-841.
|
[14] |
Zhu X F, McMechan G. AVO inversion using the Zoeppritz equation for PP reflections[C]// SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists,2012:1-5.
|
[15] |
黄捍东, 王彦超, 郭飞, 等. 基于佐普里兹方程的高精度叠前反演方法[J]. 石油地球物理勘探, 2013, 48(5):740-749,672,854.
|
[15] |
Huang H D, Wang Y C, Guo F, et al. High precision prestack inversion algorithm based on Zoeppritz equations[J]. Oil Geophysical Prospecting, 2013, 48(5):740-749,672,854.
|
[16] |
Zhi L X, Chen S Q, Li X Y, et al. An improved strategy for exact Zoeppritz equations AVA inversion[C]// SEG Technical Program Expanded Abstracts 2015.New Orleans,Louisiana. Society of Exploration Geophysicists,2015:654-658.
|
[17] |
王振涛, 慎国强, 王玉梅, 等. 模型驱动的高精度叠前地震反演方法及应用[J]. 石油物探, 2020, 59(6):927-935.
|
[17] |
Wang Z T, Shen G Q, Wang Y M, et al. Model driven high-precision prestack seismic inversion[J]. Geophysical Prospecting for Petroleum, 2020, 59(6):927-935.
|
[18] |
王昊, 严加永, 付光明, 等. 深度学习在地球物理中的应用现状与前景[J]. 地球物理学进展, 2020, 35(2):642-655.
|
[18] |
Wang H, Yan J Y, Fu G M, et al. Current status and application prospect of deep learning in geophysics[J]. Progress in Geophysics, 2020, 35(2):642-655.
|
[19] |
Yu S W, Ma J W. Deep learning for geophysics:Current and future trends[J]. Reviews of Geophysics, 2021, 59(3):e2021RG000742.
|
[20] |
张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(2):260-270.
|
[20] |
Zhang L F, Wang J Y, Zhang M S, et al. Evaluation of regional landslide susceptibility assessment based on BP neural network[J]. Northwestern Geology, 2022, 55(2):260-270.
|
[21] |
邱芹军, 马凯, 朱恒华, 等. 基于BERT的三维地质建模约束信息抽取方法及意义[J]. 西北地质, 2022, 55(4):124-132.
|
[21] |
Qiu Q J, Ma K, Zhu H H, et al. BERT-based method and significance of constraint information extraction for 3D geological modelling[J]. Northwestern Geology, 2022, 55(4):124-132.
|
[22] |
杨柳青, 王守东, 李婧铭. 多任务Transformer下的小样本叠前AVO反演方法研究[J/OL]. 地球物理学进展, 2024[2024-06-11]. http://kns.cnki.net/kcms/detail/11.2982.P.20240611.1523.062.html.
|
[22] |
Yng L Q, Wang S D, Li J M. Few-shot pre-stack AVO inversion using a multi-task Transformer[J/OL]. Progress in Geophysics, 2024[2024-06-11]. http://kns.cnki.net/kcms/detail/11.2982.P.20240611.1523.062.html.
|
[23] |
Biswas R, Sen M K, Das V, et al. Prestack and poststack inversion using a physics-guided convolutional neural network[J]. Interpretation, 2019, 7(3):SE161-SE174.
|
[24] |
孙宇航, 刘洋, 陈天胜. 基于无监督深度学习的多波AVO反演及储层流体识别[J]. 石油物探, 2021, 60(3):385-394,413.
|
[24] |
Sun Y H, Liu Y, Chen T S. Multi-wave amplitude-versus-offset inversion and reservoir fluid identification based on unsupervised deep learning[J]. Geophysical Prospecting for Petroleum, 2021, 60(3):385-394,413.
|
[25] |
Sun Y H, Liu Y, Zhang M, et al. Inversion of low-to medium-frequency velocities and densities from AVO data using invertible neural networks[J]. Geophysics, 2022, 87(3):A37-A42.
|
[26] |
单博, 张繁昌, 丁继才. 利用二次型寻优网络预测砂泥岩地层横波速度[J]. 石油地球物理勘探, 2022, 57(1):26-33,4-5.
|
[26] |
Shan B, Zhang F C, Ding J C. S-wave velocity prediction method for sand-shale formation based on quadratic optimization network[J]. Oil Geophysical Prospecting, 2022, 57(1):26-33,4-5.
|
[27] |
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]. Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings,2010:249-256.
|
[28] |
常兆光, 王清河, 杜彩凤. 应用统计方法[M]. 北京: 石油工业出版社, 2009.
|
[28] |
Chang Z G, Wang Q H, Du C F. Applied statistical method[M]. Beijing: Petroleum Industry Press, 2009.
|
[29] |
车万翔, 郭江, 崔一鸣. 自然语言处理:基于预训练模型的方法[M]. 北京: 电子工业出版社, 2021.
|
[29] |
Che W X, Guo J, Cui Y M. Natural language processing[M]. Beijing: Publishing House of Electronics Industry, 2021.
|
[30] |
单博, 范晓辉, 张繁昌. 基于深度神经网络的三维速度建模[C]// 2021年中国地球科学联合学术年会论文集,2021:182-183.
|
[30] |
Shan B, Fan X H, Zhang F C. 3D velocity modeling based on deep neural network[C]// CGU-2021,2021:182-183.
|
[1] |
LI Bo, LI Chang-Wei, LUO Run-Lin, LU Yu-Zeng, WANG Zhan. VMD-LSTM-based noise detection and predictive reconstruction for magnetotelluric signals[J]. Geophysical and Geochemical Exploration, 2025, 49(1): 100-117. |
[2] |
ZHAO Li-Fang, YU Si-Yu, LI Shao-Hua. An automatic fitting method for a variogram based on deep learning[J]. Geophysical and Geochemical Exploration, 2024, 48(5): 1359-1367. |
|
|
|
|