|
|
|
| Prospect area analysis and evaluation of natural hydrogen reservoirs in the Zhangbei area: Interpretation of basement structures based on gravity and magnetotelluric sounding |
WAN Yan-Ming1( ), LIU Ling2,3( ), SU Xin1, LIANG Shuai4, GAO Xue-Feng2 |
1. CEIC Hydrogen Innovation Technology (Beijing) Co., Ltd., Beijing 100007, China 2. Beijing Tianchengyuan Energy Co., Ltd., Beijing 100070, China 3. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China 4. No. 3 Geological Party, Hebei Bureau of Geology and Mineral Resources Exploration, Zhangjiakou 075000, China |
|
|
|
|
Abstract Large-area hydrogen escape anomalies were detected during the soil hydrogen geochemical survey in the Zhangbei Basin, making it urgent to apply geophysical methods to understand the basement structures that generate and transport hydrogen. For this purpose, the first gravity and magnetotelluric surveys targeting natural hydrogen were conducted in the Zhangbei Basin, with 1∶50,000 gravity and magnetotelluric surveys performed within the study area. Using the collected gravity and magnetotelluric data, a large-scale gravity-magnetotelluric profile across the study area was inverted, constrained by drilling, geological, and physical property data. The study identified a "two depressions and three uplifts" structural pattern in the basin, with a total Mesozoic-Cenozoic sedimentary thickness ranging from 0.62 to 1.9 km. Four concealed faults were revealed, among which faults F1 and F4 can serve as migration pathways and storage channels for natural hydrogen. The inversion results indicate that the two depressions exhibited continuous and stable stratigraphic interfaces and relatively thick sandstone-mudstone assemblage layers, which provide good sealing capacity to reduce hydrogen leakage effectively. These findings on basement structures offer valuable insights for the prospect area evaluation of natural hydrogen and subsequent exploration plans in the area. They also provide a significant basis for establishing a natural hydrogen exploration technology system and selecting optimal exploration targets.
|
|
Received: 17 February 2025
Published: 23 October 2025
|
|
|
|
|
|
19]) ">
|
Sketch of geological structure of Zhangbei Basin (modified according to reference[19])
|
|
Map of bouguer gravity anomaly, magnetotelluric survey lines and hydrogen concentration distribution along the lines
|
|
Typical apparent resistivity curves of different tectonic units
|
| 地层性 | 密度/(103 kg·m-3) | 电阻率 | 密度层平均密度 | 电性层 | | 变化范围 | 平均值 | (Ω·m) | (103 kg·m-3) | | 新生界 | Q | 1.42~1.88 | 1.68 | 10~65 | 1.68 | 低 | | N2s | 1.75~1.86 | 1.81 | 8~100 | 2.02 | 中低 | | N1h | 1.95~2.49 | 2.22 | 34~2046 | 高 | | 中生界 | K | 1.80~2.83 | 2.47 | - | 2.47 | 中等 | | J | 1.97~3.13 | 2.47 | 86~267 | | 元古宇 | PT | 2.12~3.75 | 2.71 | - | 2.71 | - | | 太古宇 | AR | 2.26~3.50 | 2.71 | 200~2000 | 高 |
|
Physical properties characteristic of Zhangbei Basin and its adjacent areas
|
|
Joint interpretation results of gravity and magnetotelluric
|
| 钻孔编号 | 新生界 | 中生界 | 太古宇 | | 第四系 | 新近系 | 白垩系 | | ZK11 | - | 117.5 | 257.7 | - | | ZK15 | - | 94.6 | - | - | | ZK0828 | 2.55 | 34.9 | 1031.86 | >1038.17 | | ZK0412 | 6.75 | 104.41 | 959.83 | >1073 |
|
The formation information table from the drills m
|
| [1] |
田黔宁, 张炜, 王海华, 等. 能源转型背景下不可忽视的新能源:天然氢[J]. 中国地质调查, 2022, 9(1):1-15.
|
| [1] |
Tian Q N, Zhang W, Wang H H, et al. Non-negligible new energy in the energy transition context:Natural hydrogen[J]. Geological Survey of China, 2022, 9(1):1-15.
|
| [2] |
Zgonnik V. The occurrence and geoscience of natural hydrogen:A comprehensive review[J]. Earth-Science Reviews, 2020,203:103140.
|
| [3] |
Lin L H, Hall J, Lippmann-Pipke J, et al. Radiolytic H2 in continental crust:Nuclear power for deep subsurface microbial communities[J]. Geochemistry,Geophysics,Geosystems, 2005, 6(7):1-13.
|
| [4] |
Merdith A S, Daniel I, Sverjensky D, et al. Global hydrogen production during high-pressure serpentinization of subducting slabs[J]. Geochemistry,Geophysics,Geosystems, 2023, 24(10):e2023GC010947.
|
| [5] |
Vacquand C, Deville E, Beaumont V, et al. Reduced gas seepages in ophiolitic complexes:Evidences for multiple origins of the H2-CH4-N2 gas mixtures[J]. Geochimica Cosmochimica Acta, 2018, 223(15):437-461.
|
| [6] |
Lévy D, Boka-Mene M, Meshi A, et al. Looking for natural hydrogen in Albania and kosova[J]. Frontiers in Earth Science, 2023,11:1167634.
|
| [7] |
Prinzhofer A, Tahara Cissé C S, Diallo A B. Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)[J]. International Journal of Hydrogen Energy, 2018, 43(42):19315-19326.
|
| [8] |
Guélard J, Beaumont V, Rouchon V, et al. Natural H2 in Kansas:Deep or shallow origin?[J]. Geochemistry,Geophysics,Geosystems, 2017, 18(5):1841-1865.
|
| [9] |
Prinzhofer A, Rigollet C, Lefeuvre N, et al. Maricá (Brazil),the new natural hydrogen play which changes the paradigm of hydrogen exploration[J]. International Journal of Hydrogen Energy, 2024,62:91-98.
|
| [10] |
Maiga O, Deville E, Laval J, et al. Characterization of the spontaneously recharging natural hydrogen reservoirs of Bourakebougou in Mali[J]. Scientific Reports, 2023,13:11876.
|
| [11] |
Briere D, Jerzykiewicz T. On generating a geological model for hydrogen gas in the southern Taoudeni Megabasin (Bourakebougou area,Mali)[C]// Society of Exploration Geophysicists and American Association of Petroleum Geologists, SEG Global Meeting Abstracts,2016:342.
|
| [12] |
Miocic J M, Heinemann N, Alcalde J, et al. Enabling secure subsurface storage in future energy systems:An introduction[J]. Geological Society,London,Special Publications, 2023, 528(1):1-14.
|
| [13] |
Bamako project. Mali airborne GT-1A gravity survey for UTS geophysics[R]. Airborne Petroleum Geophysics, 2009.
|
| [14] |
Frery E, Langhi L, Markov J. Natural hydrogen exploration in Australia-state of knowledge and presentation of a case study[J]. The APPEA Journal, 2022, 62(1):223-234.
|
| [15] |
Milkov A V. Molecular hydrogen in surface and subsurface natural gases:Abundance,origins and ideas for deliberate exploration[J]. Earth-Science Reviews, 2022,230:104063.
|
| [16] |
Edwin R M C J. Serpentinization and the origin of hydrogen gas in Kansas[J]. AAPG Bulletin, 1987, 71(1):39-48.
|
| [17] |
Newell K D, Doveton J H, Merriam D F, et al. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in northeastern Kansas[J]. Natural Resources Research, 2007, 16(3):277-292.
|
| [18] |
徐锡伟, 冉勇康, 周本刚, 等. 张北—尚义地震的地震构造环境与宏观破坏特征[J]. 地震地质, 1998, 20(2):135-145.
|
| [18] |
Xu X W, Ran Y K, Zhou B G, et al. Seismotectonics and macrodamage features of the Zhangbei-Shangyi earthquake[J]. Seismology and Geology, 1998, 20(2):135-145.
|
| [19] |
夏国礼. 坝上张北盆地成热的可能性探讨[J]. 河北地质矿产信息, 2004(2):4.
|
| [19] |
Xia G L. A Discussion on the possibility of geothermal formation in the Zhangbei Basin[J]. Geological and Mineral Information of Hebei, 2004(2):4.
|
| [20] |
杜俐, 沈光银, 林银山. 华北地台北缘火山岩型铀钼矿床找矿模型研究[J]. 地质找矿论丛, 2012, 27(4):458-462.
|
| [20] |
Du L, Shen G Y, Lin Y S. Prospecting model research of volcanics-hosted U-Mo deposits at north margin of the North China platform[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(4):458-462.
|
| [21] |
刘玮, 卢民杰, 万燕鸣, 等. 尚义—张北地区天然氢调查研究进展及前景分析[J]. 中国地质调查, 2025, 12(2):9-19.
|
| [21] |
Liu W, Lu M J, Wan Y M, et al. Progress and prospective analysis of natural hydrogen investigation research in Shangyi-Zhangbei area[J]. Geological Survey of China, 2025, 12(2):9-19.
|
| [22] |
董杰, 郭友钊, 吕生元, 等. 河北省区域地层物性柱特征[J]. 物探与化探, 2001, 25(5):344-349.
|
| [22] |
Dong J, Guo Y Z, Lyu S Y, et al. Charateristics of regional stratigraphic petrophysical column of Hebei Provinve[J]. Geophysical and Geochemical Exploration, 2001, 25(5):344-349.
|
| [23] |
郭友钊. 河北省区域岩石物性研究报告[R]. 中国地质科学院地球物理地球化学勘查研究所, 2000.
|
| [23] |
Guo Y Z. Research report on the physical properties of rocks in Hebei Province[R]. The Institute of Geophysical and Geochemical Exploration, 2000.
|
| [24] |
河北省张家口地区(张北—公会)电法普查勘探报告[R]. 河北省煤田地勘公司物测地质队,1984.
|
| [24] |
Electromagnetic survey exploration report on Zhangbei-Gonghui area in Zhangjiakou,Hebei Province[R]. Geophysical and Geological Survey Team of Hebei Coalfield Geophysical Exploration Company,1984.
|
| [25] |
曾小牛, 李夕海, 刘继昊, 等. 基于凸集投影的重力数据扩充下延一体化方法[J]. 石油地球物理勘探, 2019, 54(5):1166-1173.
|
| [25] |
Zeng X N, Li X H, Liu J H, et al. An integration of interpolation,edge padding,and downward continuation for gravity data based on the projection onto convex sets[J]. Oil Geophysical Prostecting, 2019, 54(5):1166-1173.
|
| [26] |
赵志, 李德春, 米晓利. 重磁电震一体化综合解释技术及应用[C]// 环渤海湾-泛珠三角区域地球物理学术研讨会论文集,2015:100-103.
|
| [26] |
Zhao Z, Li D C, Mi X L. Integrated interpretation technology and application of gravity,magnetic,electric and seismic methods[C]// Proceedings of the Geophysical Academic Seminar in the Bohai Rim-Pan-Pearl River Delta Region,2015:100-103.
|
| [27] |
李明瑞, 王学刚, 于波, 等. 针对目标的非地震解释技术在鄂尔多斯盆地西缘的应用[J]. 石油地球物理勘探, 2023, 58(6):1481-1488.
|
| [27] |
Li M R, Wang X G, Yu B, et al. Non-Seismic target-oriented interpretation techniques and application in the western edge of Ordos Basin[J]. Oil Geophysical Prospecting, 2023, 58(6):1481-1488.
|
| [28] |
陈晓晶, 虎新军, 白亚东, 等. 银川盆地南部灵武凹陷基底构造特征[J]. 物探与化探, 2022, 46(4):862-867.
|
| [28] |
Chen X J, Hu X J, Bai Y D, et al. Basement structure characteristics of the Lingwu depression in southern Yinchuan Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(4):862-867.
|
| [29] |
蒋首进, 吕晓春, 李怀远, 等. 音频大地电磁法在复杂构造带调查中的应用:以藏东信本断裂带八美段为例[J]. 沉积与特提斯地质, 2024, 44(4):897-908.
|
| [29] |
Jiang S J, Lyu X C, Li H Y, et al. Application of audio magnetotelluric method in the investigation of complex structural zone:A case study of the Bamei section of Xinben fault zone in eastern Xizang[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(4):897-908.
|
| [30] |
陈大磊, 王润生, 贺春艳, 等. 综合地球物理探测在深部空间结构中的应用—以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1):70-77.
|
| [30] |
Chen D L, Wang R S, He C Y, et al. Application of integrated geophysical exploration in deep spatial structures:A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1):70-77.
|
| [31] |
Liao C, Hu X Y, Zhang S H, et al. Joint inversion of gravity,magnetotelluric and seismic data using the alternating direction method of multipliers[J]. Geophysical Journal International, 2021, 229(1):203-218.
|
| [32] |
陈长敬, 刘圣博, 黄理善. 音频大地电磁测深(AMT)约束下的重力三维反演应用研究——以越城岭岩体北缘隐伏岩体为例[J]. 地球物理学进展, 2019, 34(4):1391-1397.
|
| [32] |
Chen C J, Liu S B, Hang L S. 3D inversion of gravity under audio frequency magnetotelluric method(AMT)constraint:A case study of the concealed rock mass in the northern margin of Yuechengling rock mass[J]. Progress in Geophys, 2019, 34(4):1391-1397.
|
| [33] |
王亮, 刘威, 席振铢, 等. 音频大地电磁与瞬变电磁深度学习联合反演[J]. 地球物理学报, 2024, 67(11):4372-4384.
|
| [33] |
Wang L, Liu W, Xi Z Z, et al. Deep learning audio-magnetotelluric and transient electromagnetic joint inversion[J]. Chinese Journal of Geophysics, 2024, 67(11):4372-4384.
|
| [34] |
孔志召, 山科社, 吴勇, 等. 印模法在AMT数据处理中的改进与应用[J]. 物探与化探, 2015, 39(2):416-420.
|
| [34] |
Kong Z Z, Shan K S, Wu Y, et al. The improvement and applications of the impression method in AMT data processing[J]. Geophysical and Geochemical Exploration, 2015, 39(2):416-420.
|
| [35] |
吴旭亮, 李茂. 基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征[J]. 物探与化探, 2022, 46(5):1180-1186.
|
| [35] |
Wu X L, Li M. Deep occurrence characteristics of the Malugou fault zone in the Xicha section of the Longshoushan metallogenic belt determined based on AMT[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1180-1186.
|
| [36] |
张明华, 乔计花, 黄金明, 等. 重磁电数据处理解释软件RGIS[M]. 北京: 地质出版社, 2011.
|
| [36] |
Zhang M H, Qiao J H, Huang J M, et al. RGIS:Software for processing and interpretation of gravity,magnetic and electrical data[M]. Beijing: Geological Publishing House, 2011.
|
| [37] |
杨承志, 邓居智, 陈辉. 采集参数对音频大地电磁法二维非线性共轭梯度反演结果的影响研究[J]. 地球物理学进展, 2013, 28(3):1346-1354.
|
| [37] |
Yang C Z, Deng J Z, Chen H. Research on effect of acquisition on parameters on audion-frequency magnetotelluric 2D Dinversion results using nonlineear conjugate gradient salgorithm[J]. Progression Geophys, 2013, 28(3):1346-1354.
|
| [38] |
蔡军涛, 陈小斌, 赵国泽. 大地电磁资料精细处理和二维反演解释技术研究(一)——阻抗张量分解与构造维性分析[J]. 地球物理学报, 2010, 53(10):2516-2526.
|
| [38] |
Cai J T, Chen X B, Zhao G Z. Refined techniques for data processing and two-dimensional inversionin magnetotelIuric I:Tensorde composition and dimensionality analysis[J]. Chinese Journal of Geophysics, 2010, 53(10):2516-2526.
|
| [39] |
嘉世旭, 张先康. 华北不同构造块体地壳结构及其对比研究[J]. 地球物理学报, 2005, 48(3):611-620.
|
| [39] |
Jia S X, Zhang X K. Crustal structure and comparison of different tectonic blocksin North China[J]. Chinese Journal of Geophysics, 2005, 48(3):611-620.
|
| [1] |
WANG Wen-Jie, CHEN Lei, LEI Cong-Cong, SHI Xiao-Feng, YANG Biao, WANG Wen-Bao, SUN Da-Peng, XU Hao-Qing. Deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia: Evidence from magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 640-650. |
| [2] |
YANG Min, XU Xin-Qiang, CHEN Ming, Ji Xiao-Lin, WANG Wan-Yin, ZHAO Dong-Ming, ZHOU Wei, ZHANG Yi-Mi. Research on the detection of underground pedestrian passage by high precision gravity exploration[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 876-883. |
|
|
|
|