|
|
|
| Geochemical characteristics and deep metallogenic prediction of the Laowan gold belt in Tongbai County, Henan Province |
ZHANG Hong-Yan1( ), ZHAO Huan2, GUO Peng1 |
1. Henan First Geological Exploration Institute Co., Ltd., Zhengzhou 450001, China 2. Henan Institute of Geology, Zhengzhou 450000, China |
|
|
|
|
Abstract The Laowan gold belt is located in the eastern part of the Qinling orogenic belt, between the Nanyang and Wucheng basins. It boasts super-large gold resources hosted by moderate- to low-temperature magmatic-hydrothermal gold deposits formed during the Late Yanshanian. To explore the second exploration space and achieve new prospecting breakthroughs, this study investigated the primary halo of the No.59 ore body in the Laowan gold belt. Multiple statistical methods were employed to analyze the correlations among ore-forming elements. Accordingly, reliable geochemical indicators were identified to predict deep prospecting orientations. The results show that the primary halo of the No. 59 ore body exhibits an axial zoning sequence of Sn, Ba, As, Au, Pb, Cu, Sb, Ag, Mo, Bi, W, Hg, and Zn. The front-halo element Hg appears late in sequence, positioned after ore-forming elements Au, Ag, Pb, and Cu, suggesting the presence of blind ore bodies at depth or significant extension of the known ones to a burial depth of 650 m and above. In contrast, the rear-halo element Sn appears early in the sequence, indicating that the ore body was somewhat denuded. Correlation, cluster, and factor analyses were used to investigate the affinities between ore-forming elements and other metallic elements. Strong correlations were observed among Cu, Ag, and Au, establishing them as effective prospecting indicators within the deposit area. The cumulative index ratio of front- to rear-halo elements showed an increasing trend at a burial depth of 650 m, where a well-developed and non-closed anomaly was revealed by the F2 factor score contour. This suggests promising prospecting potential at this depth and deeper parts. Based on the comprehensive analysis, this study posits that the area at and below the burial depth of 650 m in borehole ZK3041 along the exploration line 304 is an exploration target. A prediction borehole drilled north of borehole ZK3041 saw the extension of No.59 ore body at a burial depth of about 720 m. Moreover, the assessment indicators show that the ore body still holds significant prospecting potential in the deeper part.
|
|
Received: 28 February 2025
Published: 23 October 2025
|
|
|
|
|
|
|
Geological map of Laowan gold deposit
|
|
Ore type of Laowan gold deposit a—smoke gray quartz veins develop polymetallic sulfides, and the early stage I milky white quartz veins are cut through;b—in stage II, coarse-fine-grained self-isoform pyrite Py2, chalcopyrite and grayish-white quartz are cemented to form an impregnated structure;c—in the grayish-white quartz of stage I, coarse-grained autotrophic-semi-autotrophic pyrite Py1 was developed and distributed in a star-like pattern;d—fine-grained galena develops in clumps along grayish-white quartz veins in the orthorhombic diorist gold ore
|
|
Country rock alteration of Laowan gold deposit a—pyrite mineralization is distributed in a fine-grained disseminated manner in the orthorhombic dischist;b—quartz veins containing polymetallic sulfides such as pyrite during the main mineralization period cut through difluorite schist;c—in the early stage of mineralization, the flesh-red potassium feldspar veins were filled along the fissures and then faulted and broken;d—in the late stage of mineralization, carbonate veins cemented with quartz developed along the fractures of plagioclase amphibole
|
| 样品编号 | 样品岩性 | 取样位置 | | 早3-3 | 黄铁矿化石英脉型 金矿石 | 坑道-150 m中段h59-5东沿 | | 中1 | 石英脉型金矿石 | 坑道-100 m中段h60金矿脉 | | 中4-2 | 蚀变岩型金矿石 | 坑道-100 m中段h5金矿脉 | | 中6-2 | 石英脉型金矿石 | 坑道-100 m中段h59金矿脉 | | 中9-1 | 石英脉型金矿石 | 坑道-150 m中段h57金矿脉 | | 晚1-3 | 蚀变岩型金矿石 | 坑道-150 m中段h67金矿脉 | | 晚3 | 石英脉型金矿石 | 坑道-150 m中段h67金矿脉 | | 岩1 | 长英质岩脉 | 坑道-100 m中段h5金矿脉 | | 岩2 | 长英质岩脉 | 坑道-100 m中段 | | 岩3 | 斜长角闪岩 | 坑道-150 m中段 | | 岩SZ1 | 二长花岗岩 | 钻孔ZKE1012孔深1721.47~ 1724.35 | | 围1 | 斜长角闪片岩 | 坑道-100 m中段 | | 围3 | 斜长角闪片岩 | 坑道-150 m中段 | | 围4 | 长英质岩脉 | 坑道-150 m中段 |
|
Sampling positions for full rock analysis samples
|
| 序号 | 送样号 | Al2O3 | CaO | TFe2O3 | K2O | MgO | MnO | Na2O | P2O5 | SiO2 | TiO2 | LOI | | 1 | 早3-3 | 8.000 | 2.089 | 47.95 | 2.442 | 0.869 | 0.019 | 0.169 | 0.191 | 12.43 | 0.171 | 25.14 | | 2 | 中1 | 3.563 | 1.939 | 25.51 | 1.081 | 1.273 | 0.141 | 0.077 | 0.02 | 49.65 | 0.119 | 16.48 | | 3 | 中4-2 | 1.056 | 8.298 | 17.26 | 0.278 | 2.960 | 0.542 | 0.049 | 0.01 | 55.29 | 0.050 | 13.98 | | 4 | 中6-2 | 1.033 | 3.756 | 46.98 | 0.344 | 0.671 | 0.065 | 0.342 | 0.326 | 12.51 | 0.062 | 20.98 | | 5 | 中9-1 | 3.137 | 4.105 | 12.50 | 0.958 | 2.320 | 0.263 | 0.053 | 0.02 | 66.26 | 0.112 | 10.19 | | 6 | 晚1-3 | 2.240 | 4.100 | 22.32 | 0.435 | 1.810 | 0.204 | 0.042 | 0.111 | 52.16 | 0.083 | 13.66 | | 7 | 晚3 | 1.822 | 0.381 | 24.97 | 0.541 | 0.169 | 0.013 | 0.048 | 0.250 | 56.18 | 0.067 | 12.45 | | 8 | 岩1 | 14.85 | 6.086 | 4.559 | 2.013 | 2.691 | 0.092 | 4.008 | 0.088 | 59.46 | 0.339 | 5.358 | | 9 | 岩2 | 14.70 | 2.859 | 2.951 | 2.674 | 2.259 | 0.074 | 4.331 | 0.07 | 64.00 | 0.216 | 5.574 | | 10 | 岩3 | 14.43 | 3.755 | 9.883 | 1.171 | 6.130 | 0.197 | 2.530 | 0.132 | 58.31 | 0.792 | 2.188 | | 11 | 岩SZ1 | 12.58 | 0.705 | 1.064 | 3.857 | 0.029 | 0.052 | 4.849 | 0.01 | 75.54 | 0.037 | 1.086 | | 12 | 围1 | 12.70 | 8.366 | 8.009 | 1.493 | 8.035 | 0.346 | 2.449 | 0.09 | 54.71 | 0.387 | 3.009 | | 13 | 围3 | 17.62 | 1.089 | 7.196 | 4.158 | 2.647 | 0.096 | 1.208 | 0.123 | 60.66 | 0.776 | 3.886 | | 14 | 围4 | 13.13 | 5.326 | 2.418 | 3.628 | 0.300 | 0.093 | 4.143 | 0.02 | 68.01 | 0.038 | 2.280 |
|
Rock chemical composition and characteristic parameters of Laowan gold deposit
|
|
Standardization curve of rare earth element chondrite meteorites
|
|
Standardized spider web diagram of trace elements in primitive mantle
|
|
The section of exploration line 304 of ore body No. 59 in Laowan gold deposit
|
| 元素 | Au | Ag | Sn | As | Sb | Hg | Bi | Cu | Pb | Zn | W | Mo | Ba | | 外带 | 60 | 0.5 | 2.5 | 6 | 0.5 | 15 | 1.5 | 100 | 25 | 70 | 12 | 1 | 250 | | 中带 | 120 | 1 | 5 | 12 | 1 | 30 | 3 | 200 | 50 | 140 | 24 | 2 | 500 | | 内带 | 480 | 2 | 10 | 24 | 2 | 60 | 6 | 400 | 100 | 280 | 48 | 4 | 1000 |
|
Element zonation parameters in rock samples from the Laowan gold mining area
|
|
Elemental anomaly analysis of exploration line 304 of ore body No. 59 in Laowan gold deposit
|
| 标高 | Au | Ag | Sn | As | Sb | Hg | Bi | Cu | Pb | Zn | W | Mo | Ba | | 0 | 0.010 | 0.008 | 0.108 | 0.014 | 0.174 | 0.052 | 0.004 | 0.002 | 0.089 | 0.326 | 0.001 | 0.019 | 0.202 | | -100 | 0.017 | 0.118 | 0.052 | 0.091 | 0.143 | 0.053 | 0.001 | 0.003 | 0.075 | 0.122 | 0.002 | 0.040 | 0.301 | | -200 | 0.076 | 0.083 | 0.090 | 0.032 | 0.180 | 0.065 | 0.004 | 0.003 | 0.074 | 0.309 | 0.003 | 0.025 | 0.135 | | -250 | 0.046 | 0.060 | 0.069 | 0.091 | 0.247 | 0.054 | 0.003 | 0.003 | 0.083 | 0.255 | 0.002 | 0.018 | 0.067 | | -350 | 0.053 | 0.062 | 0.046 | 0.028 | 0.306 | 0.049 | 0.002 | 0.041 | 0.095 | 0.199 | 0.001 | 0.015 | 0.104 | | -450 | 0.012 | 0.029 | 0.072 | 0.044 | 0.409 | 0.060 | 0.003 | 0.032 | 0.047 | 0.246 | 0.001 | 0.022 | 0.022 | | -550 | 0.057 | 0.164 | 0.053 | 0.013 | 0.137 | 0.062 | 0.039 | 0.025 | 0.090 | 0.182 | 0.044 | 0.116 | 0.018 | | -650 | 0.002 | 0.010 | 0.058 | 0.021 | 0.248 | 0.085 | 0.003 | 0.005 | 0.053 | 0.369 | 0.002 | 0.039 | 0.105 |
|
The zonation index of indicator elements in different middle sections of exploration line 304 of ore body No.59 in Laowan gold deposit
|
| 元素 | Au | Ag | Sn | As | Sb | Hg | Bi | Cu | Pb | Zn | W | Mo | Ba | | Au | 1 | | | | | | | | | | | | | | Ag | 0.582 | 1 | | | | | | | | | | | | | Sn | -0.058 | -0.022 | 1 | | | | | | | | | | | | As | 0.32 | 0.403 | 0.058 | 1 | | | | | | | | | | | Sb | 0.149 | 0.353 | -0.043 | 0.26 | 1 | | | | | | | | | | Hg | 0.265 | 0.205 | -0.01 | 0.017 | -0.028 | 1 | | | | | | | | | Bi | 0.258 | 0.376 | 0.031 | -0.048 | -0.005 | 0.285 | 1 | | | | | | | | Cu | 0.66 | 0.435 | 0.004 | 0.178 | 0.029 | 0.075 | 0.194 | 1 | | | | | | | Pb | 0.295 | 0.33 | 0.023 | 0.059 | 0.032 | 0.043 | 0.252 | 0.269 | 1 | | | | | | Zn | -0.055 | -0.101 | 0.017 | -0.226 | 0.052 | 0.087 | 0.16 | -0.086 | 0.227 | 1 | | | | | W | 0.261 | 0.369 | 0.031 | -0.03 | -0.004 | 0.406 | 0.745 | 0.189 | 0.178 | 0.112 | 1 | | | | Mo | 0.082 | 0.222 | 0.035 | -0.075 | -0.009 | 0.126 | 0.632 | 0.088 | 0.236 | 0.2 | 0.616 | 1 | | | Ba | -0.078 | -0.079 | 0.054 | -0.032 | -0.016 | -0.081 | -0.048 | -0.073 | 0.09 | -0.029 | -0.052 | -0.015 | 1 |
|
Correlation coefficient matrix of Laowan gold deposit
|
|
R-type cluster analysis diagram of primary halo elements in Laowan gold deposit
|
| 元素 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | | Au | 0.6537 | -0.5102 | -0.1193 | 0.3056 | -0.1009 | -0.0322 | -0.0075 | -0.1797 | -0.1028 | -0.0002 | -0.2744 | 0.1996 | -0.1882 | | Ag | 0.7803 | -0.3741 | 0.1133 | -0.165 | 0.0023 | 0.0408 | -0.0086 | -0.0109 | 0.0927 | -0.1557 | -0.2885 | -0.2636 | 0.1542 | | Sn | 0.007 | 0.0482 | 0.2407 | 0.1958 | 0.6634 | -0.6233 | -0.2122 | -0.1194 | 0.1139 | 0.0035 | -0.0163 | -0.0118 | -0.0084 | | As | 0.2662 | -0.6014 | 0.1152 | -0.3151 | 0.2751 | -0.0556 | -0.0119 | 0.4489 | -0.3957 | 0.0179 | 0.1253 | 0.0427 | -0.0118 | | Sb | 0.1728 | -0.308 | 0.4332 | -0.6867 | -0.0763 | 0.0454 | -0.0817 | -0.3496 | 0.2029 | 0.1078 | 0.1225 | 0.0921 | -0.0549 | | Hg | 0.3923 | 0.1263 | -0.527 | -0.1104 | 0.0235 | 0.1353 | -0.7007 | 0.0082 | 0.0123 | 0.1178 | 0.0752 | -0.0888 | -0.0527 | | Bi | 0.7044 | 0.4641 | -0.0472 | -0.122 | 0.1198 | 0.0163 | 0.224 | 0.0474 | 0.0683 | -0.3456 | 0.1731 | -0.0905 | -0.205 | | Cu | 0.5789 | -0.4101 | -0.0065 | 0.4511 | -0.1663 | -0.0848 | 0.1184 | -0.2552 | -0.0838 | 0.1085 | 0.3777 | -0.111 | 0.0734 | | Pb | 0.4643 | 0.0519 | 0.515 | 0.3382 | -0.1841 | 0.1283 | -0.203 | 0.4263 | 0.3375 | 0.0486 | 0.0518 | 0.0995 | 0.0032 | | Zn | 0.0341 | 0.4838 | 0.5176 | 0.0166 | -0.4151 | -0.2043 | -0.2973 | -0.1126 | -0.4057 | -0.1159 | -0.0432 | -0.0397 | -0.0053 | | W | 0.7525 | 0.4628 | -0.1885 | -0.1103 | 0.1397 | 0.0219 | 0.0271 | -0.0879 | -0.0658 | -0.0858 | 0.029 | 0.2884 | 0.2187 | | Mo | 0.5676 | 0.5575 | 0.0904 | -0.0854 | 0.0944 | -0.0072 | 0.2695 | 0.0498 | -0.0887 | 0.4847 | -0.1146 | -0.0945 | -0.051 | | Ba | -0.1147 | 0.0517 | 0.3502 | 0.2427 | 0.4962 | 0.6975 | -0.0878 | -0.1976 | -0.1471 | -0.0301 | -0.0054 | -0.0226 | -0.0082 | | 累积因子方差贡献率/% | 24.925 | 40.4867 | 50.2211 | 59.0933 | 67.2097 | 74.6508 | 80.9417 | 86.1843 | 90.446 | 93.8328 | 96.8047 | 98.7449 | 100 |
|
Initial factor loading matrix in r-factor analysis of primary halo elements in Laowan gold deposit
|
| 元素 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | | Au | 0.2629 | 1.0285 | -0.2504 | -0.3168 | -0.007 | -0.0797 | -0.331 | | Ag | 0.5292 | 0.8468 | -0.1009 | -0.7169 | 0.0066 | -0.0159 | -0.3369 | | Sn | 0.0347 | -0.0028 | 0.0368 | 0.0473 | -0.9899 | 0.0546 | 0.0624 | | As | -0.0593 | 0.4274 | -0.4118 | -0.713 | -0.1947 | 0.0169 | -0.0714 | | Sb | 0.0152 | 0.0444 | 0.1121 | -0.898 | 0.103 | -0.0337 | 0.0576 | | Hg | 0.3359 | 0.1942 | -0.0708 | -0.0217 | 0.053 | -0.0801 | -1.0787 | | Bi | 1.0393 | 0.2991 | 0.1658 | -0.1066 | -0.0152 | -0.0176 | -0.2909 | | Cu | 0.2534 | 0.9792 | -0.1071 | -0.1651 | -0.0226 | -0.0664 | -0.1118 | | Pb | 0.3696 | 0.5493 | 0.6012 | -0.191 | -0.0376 | 0.3176 | -0.0478 | | Zn | 0.2102 | -0.2072 | 0.9589 | 0.0305 | -0.0281 | -0.0799 | 0.0963 | | W | 1.0474 | 0.3375 | 0.1248 | -0.0782 | -0.0379 | -0.0408 | -0.5458 | | Mo | 0.9661 | 0.1437 | 0.3095 | -0.0225 | -0.0378 | 0.0253 | -0.1013 | | Ba | -0.0595 | -0.0837 | 0.0257 | 0.0544 | -0.0503 | 0.9715 | 0.107 | | 主因子方差贡献 | 2.3886 | 2.2404 | 1.2588 | 1.4884 | 1.0184 | 1.0401 | 1.0877 | | 累积因子方差贡献率/% | 24.925 | 40.4867 | 50.2211 | 59.0933 | 67.2097 | 74.6508 | 80.9417 |
|
Orthogonal rotation factor loading matrix in r-factor analysis of Laowan gold deposit
|
|
Vertical variation diagram of zoning indexes of primary halos in Laowan gold deposit
|
|
The contour distribution of F2 factor scores
|
|
Comprehensive columnar section of No.ZKE3042 drilling
|
| [1] |
陈建立, 陈金铎, 魏从玲, 等. 河南省桐柏县老湾金矿深部及外围普查报告[R]. 郑州: 河南省地质矿产勘查开发局第一地质勘查院, 2016.
|
| [1] |
Chen J L, Chen J D, Wei C L, et al. Deep and external pre-inspection report on the Laowan gold deposit,the Tongbai County,Henan Province[R]. Zheng Zhou: The first geological exploration institute of Henan provincial bureau of geo-exploration and mineral development, 2016.
|
| [2] |
陈建立, 魏从玲, 陈英男, 等. 河南省桐柏县老湾金矿深部及外围普查取得重大突破[J]. 中国科技成果, 2022, 23(23):48-50.
|
| [2] |
Chen J L, Wei C L, Chen Y N, et al. A major breakthrough has been made in the deep and peripheral prospecting of the Laowan Gold Deposit in Tongbo County,Henan Province[J]. China Science and Technology Achievements, 2022, 23(23):48-50.
|
| [3] |
陈建立. 老湾花岗岩体与金成矿关系新认识及其找矿意义[J]. 地质找矿论丛, 2018, 33(3):351-359.
|
| [3] |
Chen J L. New understanding of the Laowan granite body-Au mineralization relation and the significance to ore-search breakthrough[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(3):351-359.
|
| [4] |
陈建立, 郭鹏, 陈英男, 等. 豫西南老湾金矿原生晕地球化学特征及深部成矿预测[J]. 金属矿山, 2019(7):124-134.
|
| [4] |
Chen J L, Guo P, Chen Y N, et al. Geochemical characteristics of primary halo and deep metallogenic prediction of laowan gold deposit in southwestern Henan Province[J]. Metal Mine, 2019(7):124-134.
|
| [5] |
孙莉, 肖克炎, 高阳. 彩霞山铅锌矿原生晕地球化学特征及深部矿产评价[J]. 吉林大学学报:地球科学版, 2013, 43(4):1179-1189.
|
| [5] |
Sun L, Xiao K Y, Gao Y. Primary halos characteristics of Caixiashan Pb-Zn deposit and prediction for deep mineralization[J]. Journal of Jilin University:Earth Science Edition, 2013, 43(4):1179-1189.
|
| [6] |
蒙轸, 俞胜, 金治鹏, 等. 甘肃肃北贾公台金矿构造叠加晕特征及深部找矿预测[J]. 地质与勘探, 2015, 51(4):731-740.
|
| [6] |
Meng Z, Yu S, Jin Z P, et al. Characteristics of primary superposed halos and ore-search prospect towards depth in the Jiagongtai gold deposit of Subei,Gansu Province[J]. Geology and Exploration, 2015, 51(4):731-740.
|
| [7] |
王超, 孙华山, 曹新志, 等. 山东招远上庄金矿原生晕特征及深部成矿预测[J]. 金属矿山, 2006(11):54-56,75.
|
| [7] |
Wang C, Sun H S, Cao X Z, et al. Characteristics of primary halo of Zhaoyuan Shangzhuang gold deposit in Shandong and forecast of ore formation at depth[J]. Metal Mine, 2006(11):54-56,75.
|
| [8] |
张宏飞, 骆庭川, 李泽九, 等. 东秦岭花岗岩类元素丰度及其地质意义[J]. 矿物岩石, 1994, 14(4):1-8.
|
| [8] |
Zhang H F, Luo T C, Li Z J, et al. Element abundances and geological significances of granitoids of eastern Qinling[J]. Mineralogy and Petrology, 1994, 14(4):1-8.
|
| [9] |
马宏卫, 吴宏伟, 邱顺才, 等. 河南桐柏老湾花岗岩地球化学特征及成因研究[J]. 矿产与地质, 2007, 21(1):65-69.
|
| [9] |
Ma H W, Wu H W, Qiu S C, et al. Geochemical characteristics and genesis of Laowan granite in Tongbai,Henan[J]. Mineral Resources and Geology, 2007, 21(1):65-69.
|
| [10] |
滕浪, 陈建立, 陈守余. 北秦岭老湾金矿带变质岩原岩恢复及其形成过程[J]. 地质找矿论丛, 2019, 34(3):406-415.
|
| [10] |
Teng L, Chen J L, Chen S Y. Restoration and formation process of metamorphic rocks in the Laowan gold ore belt,North Qinling[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(3):406-415.
|
| [11] |
张冠, 王登红, 李法岭. 秦岭东段老湾花岗岩体与老湾金矿的成因联系[J]. 地质与勘探, 2008, 44(4):50-54.
|
| [11] |
Zhang G, Wang D H, Li F L. Laowan granitic body and association to genesis of laowan gold deposit in the eastern Qinling[J]. Geology and Prospecting, 2008, 44(4):50-54.
|
| [12] |
陈良, 戴立军, 王铁军, 等. 河南省老湾金矿床地球化学特征及矿床成因[J]. 现代地质, 2009, 23(2):277-284.
|
| [12] |
Chen L, Dai L J, Wang T J, et al. Geochemical characteristics and genesis of the laowan gold deposit in Henan Province[J]. Geoscience, 2009, 23(2):277-284.
|
| [13] |
陈加伟, 孙保平, 李佩, 等. 河南老湾金矿床成矿流体性质与同位素地球化学示踪[J]. 岩石矿物学杂志, 2017, 36(5):713-724.
|
| [13] |
Chen J W, Sun B P, Li P, et al. The properties of ore-forming fluids and isotope geochemical tracing of the Laowan gold deposit,Henan Province[J]. Acta Petrologica et Mineralogica, 2017, 36(5):713-724.
|
| [14] |
谢巧勤, 徐晓春, 李晓萱, 等. 河南老湾金矿床稀土元素地球化学对成矿物质来源的示踪[J]. 中国稀土学报, 2005, 23(5):636-640.
|
| [14] |
Xie Q Q, Xu X C, Li X X, et al. Rare earth element geochemical characteristics of laowan gold deposit in Henan Province:Trace to source of ore-forming materials[J]. Journal of the Chinese Rare Earth Society, 2005, 23(5):636-640.
|
| [15] |
郭鹏, 陈建立, 陈英男, 等. 河南老湾金矿带原生晕地球化学特征及深部找矿意义[J]. 金属矿山, 2022(1):205-212.
|
| [15] |
Guo P, Chen J L, Chen Y N, et al. Geochemical characteristics and deep prospecting significance of primary halo in Laowan gold metallogenic belt,Henan Province[J]. Metal Mine, 2022(1):205-212.
|
| [16] |
韩存强, 陈永品, 张学智. 河南省桐柏县老湾-鸿仪河金矿带原生晕研究[R]. 河南省地质矿产厅第三地质调查队. 2008.
|
| [16] |
Han C Q, Chen Y P, Zhang X Z. Study on primary halo of Laowan-Hongyihe gold deposit belt,Tongbai County,Henan Province[R]. The Third Geological Survey Team of Henan Department of Geology and Mineral Resources. 2008.
|
| [17] |
毛政利, 魏亮, 赖健清, 等. 凤凰山铜矿床北区剖面原生叠加晕特征研究[J]. 金属矿山, 2010(7):87-90,102.
|
| [17] |
Mao Z L, Wei L, Lai J Q, et al. Study on the characteristics of sectional primary overlap halo in the north of Fenghuangshan copper deposit[J]. Metal Mine, 2010(7):87-90,102.
|
| [18] |
赵江南. 滇西羊拉铜矿矿体地质地球化学特征及深部找矿预测[D]. 武汉: 中国地质大学(武汉), 2012.
|
| [18] |
Zhao J N. Geological and geochemical characteristics and deep prospecting prediction of Yangla copper deposit in western Yunnan[D]. Wuhan: China University of Geosciences(Wuhan), 2012.
|
| [19] |
谭亲平, 夏勇, 王学求, 等. 黔西南灰家堡金矿田成矿构造模式及构造地球化学研究[J]. 大地构造与成矿学, 2017, 41(2):291-304.
|
| [19] |
Tan Q P, Xia Y, Wang X Q, et al. Tectonic model and tectonic-geochemistry characteristics of the Huijiabao gold orefield,SW Guizhou Province[J]. Geotectonica et Metallogenia, 2017, 41(2):291-304.
|
| [20] |
李惠, 张文华, 刘宝林, 等. 中国主要类型金矿床的原生晕轴向分带序列研究及其应用准则[J]. 地质与勘探, 1999, 35(1):32-35.
|
| [20] |
Li H, Zhang W H, Liu B L, et al. The study on axial zonality sequence of primary halo and some cri teria for the application of this sequence for major types of gold deposits in China[J]. Geology and Exploration, 1999, 35(1):32-35.
|
| [21] |
李惠, 张国义, 禹斌. 金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M]. 北京: 地质出版社, 2006.
|
| [21] |
Li H, Zhang G Y, Yu B. Structural superimposed halo model for deep blind ore prediction in gold mining area and its prospecting effect[M]. Beijing: Geological Publishing House, 2006.
|
| [22] |
李申, 赵润东, 宋岳庭, 等. 相关性分析、聚类分析、因子分析的可靠性对比——以嘎拉勒和躬琼左波两条剖面为例[J]. 地质与勘探, 2018, 54(3):574-583.
|
| [22] |
Li S, Zhao R D, Song Y T, et al. Reliability comparison of correlation,clustering and factor analyses for lithogeochemistry:Examples of two profiles in galale and gongqiongzuobo,Tibet[J]. Geology and Exploration, 2018, 54(3):574-583.
|
| [23] |
姚玉增, 巩恩普, 梁俊红, 等. R型因子分析在处理混杂原生晕样品中的应用——以河北丰宁银矿为例[J]. 地质与勘探, 2005, 41(2):51-55.
|
| [23] |
Yao Y Z, Gong E P, Liang J H, et al. Application of r-factor analysis in handing mixed samples of primary halo—A case study of Fengning silver deposit[J]. Geology and Exploration, 2005, 41(2):51-55.
|
| [24] |
董庆吉, 陈建平, 唐宇. R型因子分析在矿床成矿预测中的应用——以山东黄埠岭金矿为例[J]. 地质与勘探, 2008, 44(4):64-68.
|
| [24] |
Dong Q J, Chen J P, Tang Y. Application of r type factor analyses in mineralization prognosis:By an example of huangbuling gold deposit,Shandong Province[J]. Geology and Prospecting, 2008, 44(4):64-68.
|
| [25] |
肖高强, 张小兵, 李忠, 等. 因子分析在1∶25万丽江市幅区域地球化学数据解释中的应用[J]. 云南大学学报:自然科学版, 2017, 39(S2):175-179.
|
| [25] |
Xiao G Q, Zhang X B, Li Z, et al. Application of factor analysis to the interpretation of regional geochemical date in 1∶250,000 Lijiang sheet[J]. Journal of Yunnan University:Natural Sciences Edition, 2017, 39(S2):175-179.
|
| [26] |
李彦伟, 罗先熔, 黄学强, 等. 因子分析在青海尕大阪矿区找矿中的应用[J]. 地质找矿论丛, 2012, 27(3):361-365.
|
| [26] |
Li Y W, Luo X R, Huang X Q, et al. Application of factor analysis to ore exploration in the Gadaban claim[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(3):361-365.
|
| [27] |
卿成实. 甘肃玛曲大水金矿原生晕特征及深部找矿预测[D]. 成都: 成都理工大学, 2012.
|
| [27] |
Qing C S.The primary halo characteristics and deep prospecting of dashui gold deposit in Maqu, Gansu Province,China[D]. Chengdu: Chengdu University of Technology, 2012.
|
| [1] |
LU Wen-Dong, SUN Bin, LI Guang-Jie, WEI Wei, XIA Xiao-Xing, PAN Bing-Lei, SHA Qing, LYU Xiao-Hong, LI Yuan-Chun, QIAO Na. Application of factor analysis in geochemical zoning and its implications: A case study of 1:50,000 stream sediment survey in the Juxian-Wulian area, Shandong Province[J]. Geophysical and Geochemical Exploration, 2025, 49(2): 411-421. |
| [2] |
ZHANG Chang-Jiang, HE Jian-Feng, NIE Feng-Jun, XIA Fei, LI Wei-Dong, WANG Xue-Yuan, ZHANG Xin, ZHONG Guo-Yun. Metallogenic prediction based on the deep interest evolution network: A case study of supergenetic calcrete-hosted uranium deposits in Western Australia[J]. Geophysical and Geochemical Exploration, 2025, 49(2): 259-269. |
|
|
|
|