|
|
|
| Tomography-FWI modeling method and its application for the exploration area of northeastern Sichuan Basin,China |
GUO Yun-Dong( ) |
| Geophysical Exploration Research Institute,Zhongyuan Oilfield Company,SINOPEC,Puyang 457001,China |
|
|
|
|
Abstract The Puguang exploration area in the northeastern Sichuan Basin,China,is characterized by complex surface and subsurface conditions due to the influence of multistage tectonic movements.This dual complexity poses a challenge to precisely characterizing special geobodies like anhydrites in this area,leading to inaccurate velocity field establishment.Consequently,the seismic imaging quality is severely degraded,hindering the fine-scale exploration and production of oil and gas.To enhance velocity modeling accuracy and improve seismic modeling and imaging effects for complex structures,this study investigated the application of a joint velocity modeling method integrating full waveform inversion(FWI) for complex mountainous terrain.A depth-domain velocity modeling workflow based on FWI was developed for the Puguang exploration area.The joint inversion combining tomography and FWI,enhanced by incorporating geological constraints to improve FWI stability,results in a velocity model that effectively matches the subsurface structures.The test using actual data demonstrates that FWI can significantly improve the detail characterization accuracy of velocity models for complex transition zones.This improvement is particularly evident in the enhanced imaging of complex structures in the Dawan and Maoba blocks in the Puguang exploration area.
|
|
Received: 24 March 2025
Published: 23 October 2025
|
|
|
|
|
|
|
Joint velocity modeling flowchart
|
|
Velocity field comparison in depth domain
|
|
Comparison of velocities before(a) and after(b) geological constraints
|
|
Seismic data under complex surface in northeast Sichuan exploration area
|
|
Comparison of different seismic data
|
|
Schematic of different seismic data spectra
|
|
Velocity comparison before and after full waveform inversion
|
|
Imaging effect before and after full waveform inversion
|
|
Comparison of imaging effect of full waveform inversion based on different migration methods
|
|
Comparison between old and new results
|
|
Velocity comparison of old and new results
|
|
Comparison of old and new results in M3 well
|
| [1] |
马永生. 四川盆地普光超大型气田的形成机制[J]. 石油学报, 2007, 28(2):9-14,21.
|
| [1] |
Ma Y S. Formation mechanism of Puguang super-large gas field in Sichuan Basin[J]. Acta Petrolei Sinica, 2007, 28(2):9-14,21.
|
| [2] |
马永生, 蔡勋育, 赵培荣, 等. “川气东送”工程资源基础与前景[J]. 中国工程科学, 2010, 12(5):73-77.
|
| [2] |
Ma Y S, Cai X Y, Zhao P R, et al. Resource base and prospects of the “West-to-East Gas Pipeline” project[J]. Engineering Sciences, 2010, 12(5):73-77.
|
| [3] |
李庆洋, 黄建平, 李振春, 等. 去均值归一化互相关最小二乘逆时偏移及其应用[J]. 地球物理学报, 2016, 59(8):3006-3015.
|
| [3] |
Li Q Y, Huang J P, Li Z C, et al. Least-squares reverse time migration using de-mean normalized cross-correlation and its application[J]. Chinese Journal of Geophysics, 2016, 59(8):3006-3015.
|
| [4] |
郑靖甲, 徐秀刚, 许文德. 基于纵横波解耦及行波分离的弹性波逆时偏移成像[J]. 地球物理学报, 2024, 67(12):4748-4758.
|
| [4] |
Zheng J J, Xu X G, Xu W D. Elastic reverse time migration imaging based on P/S wave decoupling and wavefield separation[J]. Chinese Journal of Geophysics, 2024, 67(12):4748-4758.
|
| [5] |
欧阳甜子. 叠前逆时偏移在普光地区的应用研究[J]. 非常规油气, 2016, 3(3):39-43.
|
| [5] |
Ouyang T Z. Application research of prestack reverse time migration in Puguang area[J]. Unconventional Oil & Gas, 2016, 3(3):39-43.
|
| [6] |
李继伟, 李光鹏, 刁永波, 等. 复杂山地深度域地震成像处理方法——以龙门山山前带海棠铺复杂构造区为例[J]. 石油物探, 2024, 63(3):578-588.
|
| [6] |
Li J W, Li G P, Diao Y B, et al. Seismic imaging processing method in depth domain for complex mountainous areas:A case study of Haitangpu complex structural belt in Longmenshan piedmont zone[J]. Geophysical Prospecting for Petroleum, 2024, 63(3):578-588.
|
| [7] |
丁博钊, 杨静, 万学娟, 等. 柴达木盆地英中地区下干柴沟组盐间复杂断裂识别[J]. 石油地球物理勘探, 2024, 59(5):1155-1164.
|
| [7] |
Ding B Z, Yang J, Wan X J, et al. Identification of complex inter-salt faults in the Lower Ganchaigou Formation of Yingzhong area,Qaidam Basin[J]. Oil Geophysical Prospecting, 2024, 59(5):1155-1164.
|
| [8] |
方勇, 温铁民, 李虹, 等. 多方位网格层析成像技术及应用效果[J]. 物探化探计算技术, 2016, 38(5):677-680.
|
| [8] |
Fang Y, Wen T M, Li H, et al. Multi-azimuth grid tomography technique and its application effect[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(5):677-680.
|
| [9] |
蔡杰雄. 高斯束偏移与高斯束层析反演速度建模[J]. 石油物探, 2018, 57(2):262-273.
|
| [9] |
Cai J X. Gaussian beam migration and Gaussian beam tomography inversion velocity modeling[J]. Geophysical Prospecting for Petroleum, 2018, 57(2):262-273.
|
| [10] |
陈超, 李振春, 黄建平. 基于衰减补偿的多分量自适应聚焦束偏移[J]. 中国石油大学学报:自然科学版, 2024, 48(4):80-91.
|
| [10] |
Chen C, Li Z C, Huang J P. Attenuation-compensated multicomponent adaptive focused beam migration[J]. Journal of China University of Petroleum:Edition of Natural Science, 2024, 48(4):80-91.
|
| [11] |
刘旭明, 陈文贵, 唐进, 等. 地质约束速度建模在复杂构造区叠前深度偏移中的应用[J]. 地球物理学进展, 2021, 36(2):759-765.
|
| [11] |
Liu X M, Chen W G, Tang J, et al. Application of geology-constrained velocity modeling in pre-stack depth migration for complex structural areas[J]. Progress in Geophysics, 2021, 36(2):759-765.
|
| [12] |
Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.
|
| [13] |
Tarantola A. Inverse problem theory:Methods for data fitting and model parameter estimation[J]. Physics of the Earth & Planetary Interiors, 1987, 57(3):350-351.
|
| [14] |
Pratt R G. Seismic waveform inversion in the frequency domain,Part 1:Theory and verification in a physical scale model[J]. Geophysics, 1999, 64(3):888-901.
|
| [15] |
国运东. 基于组合震源编码的多尺度全波形反演方法[J]. 物探与化探, 2022, 46(3):729-736.
|
| [15] |
Guo Y D. Multi-scale full waveform inversion method based on combined source encoding[J]. Geophysical and Geochemical Exploration, 2022, 46(3):729-736.
|
| [16] |
张红静, 贺慧丽, 孙文博, 等. 基于变差分系数的变网格弹性波全波形反演[J]. 石油地球物理勘探, 2024, 59(3):514-522.
|
| [16] |
Zhang H J, He H L, Sun W B, et al. Variable-grid elastic full waveform inversion based on variable difference coefficients[J]. Oil Geophysical Prospecting, 2024, 59(3):514-522.
|
| [17] |
陈琳枝, 赵秀莲, 邢雯淋, 等. FWI速度建模技术在涠西探区的应用研究[J]. 海洋石油, 2024, 44(4):15-18,24.
|
| [17] |
Chen L Z, Zhao X L, Xing W L, et al. Application of FWI velocity modeling technology in Weixi exploration area[J]. Offshore Oil, 2024, 44(4):15-18,24.
|
| [18] |
时新宇, 杨华臣, 张建中. 海洋拖缆与海底节点资料联合全波形反演[J]. 石油地球物理勘探, 2024, 59(5):1058-1068.
|
| [18] |
Shi X Y, Yang H C, Zhang J Z. Joint full waveform inversion of marine streamer and ocean bottom node data[J]. Oil Geophysical Prospecting, 2024, 59(5):1058-1068.
|
| [19] |
陈子龙, 王海燕, 郭华, 等. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3):628-637.
|
| [19] |
Chen Z L, Wang H Y, Guo H, et al. Review on research progress and application status of seismic full waveform inversion[J]. Geophysical and Geochemical Exploration, 2023, 47(3):628-637.
|
| [20] |
杨顶辉, 董兴朋, 黄建东, 等. 高分辨率全波形地震成像研究——进展、挑战与展望[J]. 中国科学:地球科学, 2025, 55(2):319-347.
|
| [20] |
Yang D H, Dong X P, Huang J D, et al. High-resolution full-waveform seismic imaging:Progress,challenges,and prospects[J]. Science China Earth Sciences, 2025, 55(2):319-347.
|
| [21] |
刘玉柱, 黄鑫泉, 万先武, 等. 各向异性介质弹性波多参数全波形反演[J]. 地球物理学报, 2019, 62(5):1809-1823.
|
| [21] |
Liu Y Z, Huang X Q, Wan X W, et al. Multi-parameter full waveform inversion of elastic waves in anisotropic media[J]. Chinese Journal of Geophysics, 2019, 62(5):1809-1823.
|
| [22] |
胡光辉, 王立歆, 王杰, 等. 基于早至波的特征波波形反演建模方法[J]. 石油物探, 2015, 54(1):71-76.
|
| [22] |
Hu G H, Wang L X, Wang J, et al. Characteristic wave waveform inversion modeling method based on early arrivals[J]. Geophysical Prospecting for Petroleum, 2015, 54(1):71-76.
|
| [23] |
Fichtner A. Multiscale full waveform inversion[J]. Geophysical Journal International, 2013, 194(1):534-556.
|
| [24] |
国运东, 孟凡冰, 秦广胜, 等. 基于动态平面波的三维多尺度全波形反演方法[J]. 石油物探, 2022, 61(4):616-624.
|
| [24] |
Guo Y D, Meng F B, Qin G S, et al. Three-dimensional multi-scale full waveform inversion method based on dynamic plane wave[J]. Geophysical Prospecting for Petroleum, 2022, 61(4):616-624.
|
| [25] |
Fichtner A. Multiscale full waveform inversion[J]. Geophysical Journal International, 2013, 194(1):534-556.
|
| [26] |
Sirgue L, Pratt R G. Efficient waveform inversion and imaging:A strategy for selecting temporal frequencies[J]. Geophysics, 2004, 69(24):231-248.
|
| [27] |
黄建平, 杨秀金, 张鑫, 等. 面向深部地热岩体的弹性波逆时偏移成像方法[J]. 中国石油大学学报:自然科学版, 2024, 48(1):55-62.
|
| [27] |
Huang J P, Yang X J, Zhang X, et al. Elastic reverse time migration imaging method for deep geothermal rock mass[J]. Journal of China University of Petroleum:Edition of Natural Science, 2024, 48(1):55-62.
|
| [28] |
谷丙洛, 韩建光, 陈军, 等. 碳酸盐岩油气储层高精度成像方法研究[J]. 地质学报, 2020, 94(8):2534-2544.
|
| [28] |
Gu B L, Han J G, Chen J, et al. Research on high-precision imaging methods for carbonate oil and gas reservoirs[J]. Acta Geologica Sinica, 2020, 94(8):2534-2544.
|
| [1] |
WANG Kun, WU Guo-Chen, JIA Zong-Feng, YANG Ling-Yun. Reflection waveform inversion in the time-frequency domain[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1155-1163. |
| [2] |
WANG Bing-Gang, DING Cheng-Zhen, ZHANG Dan, DONG Qing-Yu, CHEN Xin, WANG Ze, YANG Yang, XUAN Rui-Qing. Structure-oriented log-seismic error correction in prestack depth migration[J]. Geophysical and Geochemical Exploration, 2025, 49(4): 838-845. |
|
|
|
|