|
|
|
| Prediction of thin interbedded sandstone reservoir thickness using multi-attribute fusion technology:A case study from the W oilfield,Kazakhstan |
| Yierfan Aximujiang1, LU Zhi-Ming1, Aini Maimaiti1, Mierzhati Dilimulati2, Duolikun Maimaitiming1 |
1. Research Institute of Exploration and Development,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China 2. Oil & Gas Storage and Transportation Company,Xinjiang Oilfield Company,PetroChina,Karamay 834000,China |
|
|
|
|
Abstract The thin interbedded sand bodies in the W oilfield of the South Turgay Basin,Kazakhstan,exhibit rapid lateral variation and poor connectivity.For many years,the application of conventional reservoir prediction methods has yielded unsatisfactory results,and unclear insights into the horizontal and vertical distribution characteristics of favorable reservoirs have severely constrained the oilfield's exploration and development.To address these challenges,this study adopted an integrated approach incorporating forward modeling,post-stack seismic processing,and multi-attribute fusion to develop a prediction methodology suitable for the geological conditions of the study area.Based on forward modeling that established the relationship between reservoir variation and seismic waveform changes,empirical mode decomposition and blue filtering were applied to enhance the dominant frequency and resolution of the seismic data.The multi-attribute fusion of waveform indication inversion results,root-mean-square amplitude,and instantaneous frequency ultimately delineated the distribution and thickness of the target sand bodies.The results demonstrate that this method effectively predicts the distribution and thickness of favorable sand bodies,with errors of less than 2 meters compared to drilled thicknesses across the field.The spatial distribution of reservoirs is consistent with geological understanding.This study provides valuable guidance for subsequent rolling evaluation and efficient development of the oilfield.
|
|
Received: 30 May 2024
Published: 23 October 2025
|
|
|
|
|
|
|
Forward simulation of W oilfield
|
|
Attribute characteristics of seismic forward profile
|
|
Comparison of seismic data before and after frequency enhancing
|
|
Seismic waveform indication inversion profile
|
|
Correlation analysis between attributes and actual drilling data
|
|
Correlation analysis between prediction and actual drilling data
|
|
Attribute diagram of layer M in W oilfield
|
|
Sandbdy thickness prediction of Layer M in W oilfield based on multi-attribute fusion
|
| 井名 | 钻遇厚度/m | 预测厚度/m | 误差/m | | W1 | 5.6 | 6.2 | 0.6 | | W107 | 4.0 | 3.4 | -0.6 | | W108 | 0 | 0.3 | 0.3 | | W111 | 2.3 | 3.5 | 1.2 | | W112 | 8.6 | 8.7 | 0.1 | | W13 | 14.5 | 12.4 | -2.1 | | W130 | 10.6 | 9.7 | -0.9 | | W15 | 12.1 | 10.2 | -1.9 | | W16 | 13.1 | 14.1 | 1.0 | | W18 | 5.2 | 6.5 | 1.3 | | W19 | 11.5 | 10.4 | -1.1 | | W205 | 3.5 | 5.1 | 1.6 | | W21 | 4.9 | 5.9 | 1.0 | | W216 | 8.6 | 9.6 | 1.0 | | W250 | 3.4 | 4.7 | 1.3 | | W26 | 8.1 | 9.9 | 1.8 | | W260 | 4.5 | 4.1 | -0.4 | | W27 | 8.1 | 6.5 | -1.6 | | W270 | 11.3 | 12.6 | 1.3 | | W271 | 16.1 | 14.3 | -1.8 | | W272 | 11.1 | 12.9 | 1.8 | | W273 | 10.2 | 11.9 | 1.7 | | W275 | 13.1 | 11.4 | -1.7 | | W28 | 6.2 | 6.6 | 0.4 | | W4 | 11.6 | 13.5 | 1.9 | | W41 | 5.5 | 7.1 | 1.6 | | W49 | 7.4 | 6.9 | -0.5 | | W57 | 7.3 | 6.2 | -1.1 | | W58 | 2.8 | 3.5 | 0.7 | | W6 | 5.5 | 5.0 | -0.5 | | W90 | 13.8 | 13.6 | -0.2 | | W96 | 13.2 | 11.8 | -1.4 |
|
Error analysis of multi-attribute fusion sand body thickness prediction
|
| [1] |
童庆, 刘艳娜, 张伟, 等. 南图尔盖盆地West-Tuzkol油田成藏规律研究[J]. 重庆科技学院学报:自然科学版, 2017, 19(5):17-20,24.
|
| [1] |
Tong Q, Liu Y N, Zhang W, et al. Research on the reservoir-forming rule about west-tuzkol oilfield in South Turgay Basin[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2017, 19(5):17-20,24.
|
| [2] |
赵阳, 赵伦, 王进财, 等. 薄互层砂岩油藏三维地质相建模方法对比——以南图尔盖盆地West Tuzkol油田为例[C]// 西安: 2018油气田勘探与开发国际会议(IFEDC 2018)论文集, 2018.
|
| [2] |
Zhao Y, Zhao L, Wang J C, et al. Comparison of 3D geological modeling methods for thin interbedded sandstone reservoirs:A case study of West Tuzkol oilfield in South Turgai Basin[C]// Xi'an: 2018 International Field Exploration and Development Conference,2018.
|
| [3] |
陈更生, 谢清惠, 吴建发, 等. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 2022, 46(6):1349-1358.
|
| [3] |
Chen G S, Xie Q H, Wu J F, et al. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1349-1358.
|
| [4] |
任宪军, 李钟, 马应龙, 等. 地震分频迭代反演在薄层河道砂体预测中的应用[J]. 物探与化探, 2023, 47(2):420-428.
|
| [4] |
Ren X J, Li Z, Ma Y L, et al. Application of seismic frequency-divided iterative inversion in the prediction of thinly laminated channel sand bodies[J]. Geophysical and Geochemical Exploration, 2023, 47(2):420-428.
|
| [5] |
王成泉, 王孟华, 周佳宜, 等. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1):87-95.
|
| [5] |
Wang C Q, Wang M H, Zhou J Y, et al. Application of multi-attribute fusion in quantitative prediction of reservoirs:A case study of Yangshuiwu buried hill in Langgu Sag[J]. Geophysical and Geochemical Exploration, 2022, 46(1):87-95.
|
| [6] |
国春香, 郭淑文, 朱伟峰, 等. 河流相砂泥岩薄互层预测方法研究与应用[J]. 物探与化探, 2018, 42(3):594-599.
|
| [6] |
Guo C X, Guo S W, Zhu W F, et al. Research and application of fluvial sand-shale thin interbedding prediction method[J]. Geophysical and Geochemical Exploration, 2018, 42(3):594-599.
|
| [7] |
安鹏, 于志龙, 刘专, 等. 敏感频率地震属性在薄层砂体预测中的应用——以松辽盆地肇源地区为例[J]. 物探与化探, 2020, 44(2):321-328.
|
| [7] |
An P, Yu Z L, Liu Z, et al. The application of sensitive frequency seismic attributes to thin sand body prediction:Exemplified by Zhaoyuan area in Songliao Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):321-328.
|
| [8] |
刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2):379-386.
|
| [8] |
Liu J C, Zhang C, Han X J. Comprehensive seismic reservoir prediction of M02 member in B oilfield in Kazakhstan[J]. Geophysical and Geochemical Exploration, 2021, 45(2):379-386.
|
| [9] |
冯昕鹏, 王涛, 白志涛, 等. 频率域薄储集层预测技术在煤系地层中的应用[J]. 新疆石油地质, 2021, 42(5):605-611.
|
| [9] |
Feng X P, Wang T, Bai Z T, et al. Application of thin reservoir prediction technology based on frequency domain in coal measure strata[J]. Xinjiang Petroleum Geology, 2021, 42(5):605-611.
|
| [10] |
魏冬. 地震属性技术综述[J]. 内蒙古石油化工, 2020, 46(3):95-96.
|
| [10] |
Wei D. Summary of seismic attribute technology[J]. Inner Mongolia Petrochemical Industry, 2020, 46(3):95-96.
|
| [11] |
王厦. 辽河盆地西部凹陷雷家地区三维地震资料高分辨率处理技术研究[D]. 青岛: 中国石油大学(华东), 2019.
|
| [11] |
Wang S. Research on high resolution processing technology of 3D seismic data in Leijia area of western depression of Liaohe Basin[D]. Qingdao: China University of Petroleum(EastChina), 2019.
|
| [12] |
罗杰, 杨懋新, 孙珍珍, 等. 蓝色滤波提频技术在提高致密油叠置砂体薄互储层预测精度中的应用[C]// 2022年中国石油物探学术年会论文集(中册),2022.
|
| [12] |
Luo J, Yang M X, Sun Z Z, et al. Application of blue filter frequency up-conversion technology in improving the prediction accuracy of tight oil overlying sand body thin interbedded reservoirs [C]// Proceedings of the 2022 Annual Conference of China Petroleum Geophysical Exploration(Volume II),2022.
|
| [13] |
杨国权, 刘强, 刘延利. 地震属性融合技术在河道砂体识别中的应用[J]. 物探化探计算技术, 2016, 38(6):832-836.
|
| [13] |
Yang G Q, Liu Q, Liu Y L. The application of seismic attribute fusion technology in recognizing channel sands[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(6):832-836.
|
| [14] |
姜蕾, 张云银, 林中凯. 敏感属性融合技术预测深部薄互层砂岩——以临南地区沙三下亚段河道砂体为例[J]. 新疆石油地质, 2019, 40(6):725-730.
|
| [14] |
Jiang L, Zhang Y Y, Lin Z K. Sensitive attribute fusion technology to predicct deep thin interbedded reservoir:A Case from channel sand bodies in the lower Sha-3 member of Shahejie Formation in Linnan area[J]. Xinjiang Petroleum Geology, 2019, 40(6):725-730.
|
| [15] |
盛述超, 毕建军, 李维振, 等. 关于地震波形指示模拟反演(SMI)方法的研究[J]. 内蒙古石油化工, 2015, 41(21):147-151.
|
| [15] |
Sheng S C, Bi J J, Li W Z, et al. Research on seismic waveform indication simulation inversion(SMI) method[J]. Inner Mongolia Petrochemical Industry, 2015, 41(21):147-151.
|
| [16] |
陈彦虎, 毕建军, 邱小斌, 等. 地震波形指示反演方法及其应用[J]. 石油勘探与开发, 2020, 47(6):1149-1158.
|
| [16] |
Chen Y H, Bi J J, Qiu X B, et al. A method of seismic meme inversion and its application[J]. Petroleum Exploration & Development, 2020, 47(6):1149-1158.
|
| [17] |
王延光, 李皓, 李国发, 等. 一种用于薄层和薄互层砂体厚度估算的复合地震属性[J]. 石油地球物理勘探, 2020, 55(1):153-160,10.
|
| [17] |
Wang Y G, Li H, Li G F, et al. A composite seismic attribute used to estimate the sand thickness for thin bed and thin interbed[J]. Oil Geophysical Prospecting, 2020, 55(1):153-160,10.
|
| [18] |
张军华, 朱焕, 高荣涛, 等. 地震复合属性——地震属性提取与解释新方法[J]. 新疆石油地质, 2007, 28(4):494-496,503.
|
| [18] |
Zhang J H, Zhu H, Gao R T, et al. Compound attribute as new method for pickup and interpretation of seismic attributes[J]. Xinjiang Petroleum Geology, 2007, 28(4):494-496,503.
|
| [1] |
YANG Xiao-Dong, ZHANG Jian-Qiang, GENG Li-Qiang, ZHANG Xue-Qi, CHENG Hui-Hui, KANG Ran. Performance and analysis of seismic recognition in coal mine underground roadways[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1133-1140. |
| [2] |
SUN Si-Yuan, GAO Xiu-He, CAO Xue-Feng. Footprint analysis and footprint-FFT-based fast forward modeling of potential fields[J]. Geophysical and Geochemical Exploration, 2025, 49(1): 63-72. |
|
|
|
|