国土资源遥感, 2018, 30(2): 21-28 doi: 10.6046/gtzyyg.2018.02.03

综述

基于SST的珊瑚礁白化监测技术综述

孙旋,1,2, 蔡玉林,1,2, 索琳琳1,2, 夹尚丰1

1.山东科技大学测绘科学与工程学院,青岛 266590

2.海岛(礁)测绘技术国家测绘地理信息局重点实验室,青岛 266590

Review of coral reef bleaching monitoring technology based on SST

SUN Xuan,1,2, CAI Yulin,1,2, SUO Linlin1,2, JIA Shangfeng1

1. College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China

2. Key Laboratory of Surveying and Mapping Technology on Island and Reef, NASMG, Qingdao 266590, China

通讯作者: 蔡玉林(1974-),男,讲师,主要从事资源环境遥感方面的研究。Email:yulin_cai@163.com

第一联系人:

第一作者: 孙 旋(1992-),女,研究生,主要从事资源环境遥感方面的研究。Email: 1763571319@qq.com

收稿日期: 2016-10-13   修回日期: 2017-04-11   网络出版日期: 2018-06-15

基金资助: 国家地理信息局重点研发计划“海洋环境安全保障”重点专项子项目“海上突发事件应急处置综合决策支持系统集成与示范”.  编号:2017YFC1405006

Received: 2016-10-13   Revised: 2017-04-11   Online: 2018-06-15

Fund supported: .  编号:2017YFC1405006

摘要

受全球气候变暖的影响,珊瑚礁白化现象越来越严重,全球约1/3的珊瑚处于灭绝边缘。海水温度异常是影响珊瑚礁白化以至于死亡的重要原因。美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)基于海表温度(sea surface temperature,SST)开发了珊瑚礁白化监测产品,目前已有50 km和5 km这2种空间分辨率的产品,用以估算全球珊瑚礁白化程度并进行白化预警。在回顾珊瑚礁白化研究现状的基础上,介绍了NOAA发布的珊瑚礁白化监测数据产品及算法,并基于5 km空间分辨率的数据产品对我国南海区域进行珊瑚礁白化监测的实例研究分析,发现2015年6月份南海部分区域可能已发生珊瑚礁白化,强调开展适合我国珊瑚礁白化预警方法研究的必要性和迫切性,并为相关研究提供了技术参考。

关键词: 珊瑚礁白化 ; 白化热点 ; 周热度 ; 白化预警

Abstract

Influenced by the global warming,coral reef bleaching phenomenon is more and more serious and approximately 1/3 of the world’s coral is facing possible extinction. Sea water temperature anomaly is one of the most important causes of coral reef bleaching and mortality. NOAA has developed thermal stress satellite products for coral reef bleaching monitoring based on sea surface temperature(SST),including 50 km and 5 km spatial resolution. This paper presents the research status of coral reef bleaching,and introduces the methods and algorithms that NOAA has developed for monitoring coral reef bleaching. There is also a case study of coral reef bleaching monitoring in South China Sea based on NOAA’s coral reef bleaching monitoring products. It is shown that it is very probable that coral reef bleaching already occurred in the study area in June 2015. This paper expounds the necessity and urgency of exploring the related research on coral bleaching warning methods in China through research review and case study,and provides relevant research and technical reference.

Keywords: coral reef bleaching ; bleaching hotspot ; degree heat week ; bleaching warning

PDF (7631KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孙旋, 蔡玉林, 索琳琳, 夹尚丰. 基于SST的珊瑚礁白化监测技术综述. 国土资源遥感[J], 2018, 30(2): 21-28 doi:10.6046/gtzyyg.2018.02.03

SUN Xuan, CAI Yulin, SUO Linlin, JIA Shangfeng. Review of coral reef bleaching monitoring technology based on SST. REMOTE SENSING FOR LAND & RESOURCES[J], 2018, 30(2): 21-28 doi:10.6046/gtzyyg.2018.02.03

0 引言

珊瑚一般分为造礁珊瑚与非造礁珊瑚2大类。非造礁珊瑚多是单体,少数为小型的块状或枝状复体,这类珊瑚虫的内外胚层之间没有虫黄藻共生,适应性强,特别是在低温和各种深度的环境中均能生存。而在造礁珊瑚的体内,共生有大量的虫黄藻,正是它们为珊瑚染上绚丽的色彩。虫黄藻可以进行光合作用,一面制造养料,一面为造礁珊瑚的生长清除代谢的废料和提供氧气。然而虫黄藻需要生长在22~30 ℃且有一定含盐度的海水中,它的光合作用还要求有充分的日照,因此地球上的珊瑚礁大都分布在S30°~N30°之间水深小于50 m的热带和亚热带浅水海域[1]。然而,珊瑚是一种活生物,极度敏感。如果海水水温超过一定范围,珊瑚就会抛弃虫黄藻[2],恢复成白色,如果虫黄藻不再复活,珊瑚就会死去。珊瑚礁白化就是由于珊瑚失去体内共生的虫黄藻和(或)共生的虫黄藻失去体内色素而导致五彩缤纷的珊瑚礁变白的生态现象[3]。温度作为影响珊瑚健康状态的重要因子得到了学者们广泛的关注。

据估计,地球上的珊瑚礁面积近300 000 km2,其中90%以上分布于印度洋—太平洋海域,包括澳大利亚、中国南海、红海和印度洋群岛。大西洋和加勒比海也有少量的珊瑚礁分布,但不到全球总量的1/10[1]。20世纪90年代以来全球珊瑚礁持续衰退,除了受到异常气候(如厄尔尼诺)的影响外,全球气候变暖的趋势也给珊瑚礁的生长带来了不利影响[4]。1997—1998年间异常高温导致了全球大面积珊瑚礁白化,造成全球珊瑚礁损失了16%[5]。近年来,部分海区频繁发生的珊瑚礁白化不仅导致了区域性珊瑚礁生态系统的严重退化,而且已经影响到了全球珊瑚礁生态系统的平衡,受到了人们的高度重视。

我国南海分布着许多珊瑚岛礁[6],受人类活动和全球变暖的双重影响,很大一部分珊瑚礁正处于严重退化之中[7],加之受2015—2016年间超强厄尔尼诺事件的影响,海水异常高温对珊瑚礁产生了严重影响。随着遥感技术的发展与应用,近年来利用遥感数据获取海水表层温度来监测珊瑚礁白化现象已然被证明是可靠且有效的。这些产品已成功监测了全球几起大规模的珊瑚礁白化事件,例如大堡礁白化事件和加勒比海珊瑚礁白化事件等[8,9,10]。因此,基于海表温度(sea surface temperature,SST)的珊瑚礁白化监测方法具有重要的现实意义。

1 温度变化对珊瑚礁的影响

引起珊瑚礁白化的原因有很多,经研究表明,极端异常的气候条件,尤其是温度、紫外线辐射和光合有效辐射等因素发生明显异常,会造成浅水热带珊瑚礁白化[2]。其中,影响最为严重的是海水温度异常。研究表明,大规模珊瑚白化事件是由越来越频繁和严重的异常海水温度造成,并且是造成全球珊瑚礁生态系统衰退的最显著因素之一[8,11]

早在1931年Yonge等[12]就提到温度升高胁迫珊瑚失去虫黄藻而发生白化现象; 朱葆华等[13]认为珊瑚生长的最适宜温度范围为23~28 ℃,大于或小于该范围,珊瑚会因其体内的共生藻脱离而出现白化。通过他们的实验得知,当温度为32 ℃时,经过一段时间(18 h)以后,大部分共生藻都会从珊瑚里游离出来,使珊瑚发生白化现象。由此可以得出,温度是诱导珊瑚发生白化的一个重要因素。

在较高的温度下(一般指超过30 ℃),珊瑚体内的共生藻会出现光抑制,造成光合电子传递的效率降低[14,15,16]。也就是说,共生藻的光合作用在较高的温度下会受到损害,在更高的温度下(34 ℃以上),其光合作用则完全停止。Warner等[17]对此进行了更深入的研究,他们认为在较高的温度下,共生藻的光系统Ⅱ(photosystem Ⅱ,PSⅡ)受到损害是珊瑚白化的一个决定因素; 另外,在高温下超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶的活性均降低,共生体(珊瑚和共生藻)代谢产生的超氧阴离子自由基和过氧化氢则会逐渐积累,对共生体的毒害也就越来越大[18]。因此,共生藻游离是共生体遭遇不良环境的指示。

Glynn等[19]证明了珊瑚对于一段时间的持续热胁迫的累积非常敏感,发现当水温高出夏季最高温度1 ℃时,珊瑚就会受到压迫,进入应激状态,当共生藻及其主体珊瑚虫的共生关系在不同的环境胁迫下发生分解时,珊瑚虫将摆脱其组织中的共生藻,通过透明的珊瑚组织可以看到底部的白色碳酸钙骨架,即发生珊瑚礁白化,当短暂的环境胁迫过去之后,珊瑚通常会从轻度白化中恢复过来,新植的海藻逐步恢复它们的颜色; Berkelmans等[20]指出,环境水温只要高出珊瑚耐受程度的1~2 ℃,就可能导致珊瑚白化,且热胁迫持续数周将会导致大规模的白化现象。如果热胁迫程度很强,并且持续时间较长,就会导致珊瑚死亡; Wilkinson[11]提出珊瑚礁白化已成为珊瑚礁系统退化最重要的原因,在适宜的环境条件下,对于严重白化的珊瑚需要几十a 时间才能恢复正常。

由此可见,温度过高是影响全球珊瑚礁白化的主导因素,而通过SST变化监测来估测全球珊瑚礁白化程度是非常有效的方法。

2 NOAA白化监测产品简介

早在1997年,美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)的国家环境卫星数据和信息服务中心(National Environmental Satellite, Data, and Information Service,NESDIS)就开始发布卫星获取的全球近实时夜间SST产品,空间分辨率为50 km,每周更新2次,来监测珊瑚礁白化状况,并通过热胁迫估测全球范围内的珊瑚礁白化程度。该组织在2000年发展珊瑚礁监测计划(coral reef watch,CRW)[21],CRW的早期实验性产品是由Goreau等 [22]和Montgomery等[23]提出的。在2002年9月—2003年2月之间,该产品对全球范围内的珊瑚礁区域成功地进行珊瑚白化预警,因此随之转向为“正式运营”状态。这些业务产品由NESDIS提供并支持24 h/7 d的实时监测,从而对引起珊瑚礁白化的环境状况进行全球范围的持续监测[2]

目前CRW珊瑚礁白化监测和评估的遥感产品包括: SST异常值、SST、珊瑚白化热点、珊瑚白化周热度(degree heating weeks,DHW)、白化预警区、虚拟站、SST/DHW时间序列和卫星白化预警等[22]。这些产品是由CRW在NOAA / NESDIS利用极地运行环境卫星(polar operational environmental satellite,POES)的甚高分辨率辐射计(advanced very high resolution radiometer,AVHRR)获得的空间分辨率为0.5°(约50 km)的SST数据产生的。相对于白天—夜晚获取的数据,选择夜间卫星数据可以消除由太阳光照对SST造成的影响,避免太阳光污染,从而提高测量精度[23]。下文是CRW主要产品的简介及选取的各种产品在2016年11月4日的监测结果示意图。

2.1 SST 异常值

SST异常值也称海表温度距平值。该产品直观地表示出了全球SST的异常程度。为了计算SST异常值,还需要先了解一下SSTclimatology,该参数可以解释为长期的平均SST,即“气候型SST”。CRW用7 a(1985—1990年和1993年)中每个月的月平均气候型温度插值得到每天的气候型温度[24]。规定月平均气候型温度是相应月份第15天的气候型温度,采用线性插值方法对相邻2个月的月平均气候型温度进行插值,从而求得其他日期的气候型温度值,即

SSTclimatology = DSST-D1D2-D1(SST_clater-SST_cearly) +SST_cearly , (1)

式中: SST_cearly为距离待求日最近的2个15号中较靠前的那个月份的月平均气候型温度; SST_clater为靠后那个月份的月平均气候型温度(即当前月份15号的气候型温度); D1为发布SST_cearly的日期; D2为发布SST_clater的日期; DSST为待求日的日期。

SST异常为每日SSTSSTclimatology之间的差值,表示某天的SST与正常情况下该天的温度(即气候型温度)之间的差异,表示温度异常幅度的大小,即

SSTanomaly =SST-SSTclimatology , (2)

式中SSTanomaly为SST异常。

CRW定义MMMclimatology为月平均SSTclimatology的最大值。

图1是2016年11月4日的5 km空间分辨率的SST异常值产品。该数据来自NOAA珊瑚礁监测官方网站(http://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php),其中温度距平值为正时用暖色表示,数值从黄色到红色依次递增; 数值为负时用冷色表示,绝对值由蓝色到紫色递增。

图1

图1   2016年11月4日SST异常值

Fig.1   SST anomalies on Nov.4,2016


2.2 白化热点

白化热点[21,25]是指SST与最热月平均温度的差值,描述了一个地区的SST高出该地区长期以来的最热月温度的程度。计算公式为

Hotspot= SST-MMMclimatology SST>MMMclimatology0        SSTMMMclimatology, (3)

式中Hotspot为白化热点,℃[25]

2013年发布的5 km空间分辨率产品的高空间和高时间分辨率使得对珊瑚礁白化监测和评估的精度明显提高,实现了数据的大规模近岸覆盖,且缩小了由云覆盖引起的数据差异[2]。但由于已发布数据的时间太短,还不足以计算出长期气候型数据,因此CRW用AVHRR Pathfinder Version 5.2 (PFV5.2)从1985—2012年间的SST数据计算得到气候型温度,进而求得每天的热点数据[2]

图2是2016年11月4日的白化热点产品。该图根据CRW的SST产品数据制作,图中颜色表示SST高出最热月平均温度的程度,数值由蓝到红依次递增。

图2

图2   2016年11月4日珊瑚礁白化热点

Fig.2   Coral reef bleaching hotspot on Nov.4,2016


2.3 DHW

珊瑚白化由来自海水温度的长期热胁迫造成,而白化热点是珊瑚受到热胁迫强度的度量,它只能表示珊瑚在某个时间点的热胁迫程度,无法表示出持续的累积效果,为此需要一个能揭示温度对珊瑚产生长期热胁迫作用效果的指数,于是DHW的概念应运而生。DHW表示给定区域内最近12周的白化热点的累积值,由于初期的实验监测表明温度低于1 ℃的热点值不足以对珊瑚产生明显的热胁迫,因此,只有白化热点大于(或等于)1 ℃时才有累积[6]。当温度高出最热月平均温度1 ℃(即白化热点等于1 ℃)时,称该节点为白化阈值[19],珊瑚对于温度高于白化阈值的敏感性较强,因此当温度高于该阈值时,珊瑚受到的热胁迫会不断累积,利用最近12周的热点累积值表示珊瑚持续受到的热胁迫程度。一个DHW等于一周的白化热点水平保持在1 ℃,或者半个星期的白化热点水平保持在2 ℃,单位为℃-周。由于50 km空间分辨率的SST数据每

周更新2次,因此50 km 空间分辨率的DHW计算公式为

DHW=0.5 i=124Hotspoti Hotspoti≥1。 (4)

由于5 km空间分辨率的数据是每天更新一次,因此最近12周共有84次数据,故5 km空间分辨率的DHW计算公式为

DHW= 17i=184Hotspoti Hotspoti≥1。 (5)

图3是2016年11月4日的DHW产品。该图表明在过去12周内大于(或等于)1 ℃的热点累积。蓝色区域表示DHW为0~4 ℃-周,对珊瑚礁的热胁迫较微弱; 黄色区域表示DHW为4~8 ℃-周,对珊瑚礁的热胁迫作用明显,该区域的珊瑚礁发生白化的可能性较大; 红色以及DHW>12℃-周的区域,珊瑚礁已经白化或者死亡。图例中从左到右表示DHW数值依次递增。

图3

图3   2016年11月4日珊瑚礁白化DHW

Fig.3   Coral reef bleaching DHW on Nov.4,2016


2.4 白化预警区域

CRW开发了珊瑚礁白化预警系统,该系统根据白化热点和DHW对珊瑚礁白化区域进行分级,更清晰地表示出珊瑚礁白化区域的分布及其严重情况,从而做出预报警示。由珊瑚礁现场监测数据与卫星数据相比得到的监测结果表明,当DHW值达到4 ℃-周时,珊瑚会出现一定程度的白化现象,当DHW值高达8 ℃-周时,则会出现大规模的珊瑚白化甚至死亡现象。基于此,CRW针对DHW的不同取值范围将珊瑚礁白化程度进行分级,作出白化预警分级图[6,9]图4为2016年11月4日的白化预警分级产品,表1为白化预警级别。

图4

图4   2016年11月4日珊瑚礁白化预警区域

Fig.4   Coral reef bleaching alert area on Nov.4,2016


表1   珊瑚礁白化预警分级

Tab.1  Stress levels of coral reef bleaching alert areas

珊瑚礁白
化预警级别
预警标准影响
无危险Hotspot≤0
白化监视0<Hotspot<1
白化警告Hotspot≥1且0<DHW<4有可能发生白化
白化警报级别1Hotspot≥1且4≤DHW<8很可能发生白化
白化警报级别2Hotspot≥1且DHW≥8可能出现死亡

新窗口打开| 下载CSV


3 中国南海应用案例

3.1 实验区域

我国南海位于E99°9'~121°11',N2°45'~23°24',北靠我国大陆和台湾岛,东接菲律宾群岛,南邻加里曼丹岛和苏门答腊岛,西接中南半岛和马来半岛。南海境内分布有东沙群岛、西沙群岛、南沙群岛和中沙群岛等200多个岛屿,包括许多珊瑚礁和珊瑚岛。南海和南海诸岛全部在北回归线以南,接近赤道,属赤道带、热带海洋性季风气候区。随着全球变暖以及人类活动的影响,南海中珊瑚礁白化程度日益严重,部分地区的珊瑚礁生命危在旦夕,监测并保护珊瑚礁的行动已刻不容缓。为此,本文在南海区域内选取有代表性的A点(N16°12',E112°16')为样点。该点位于西沙群岛的宣德群岛附近,周围分布着浪花礁、玉琢礁和盘石屿等多个珊瑚岛礁。

3.2 珊瑚礁白化监测

根据5 km空间分辨率的SST数据绘出样点A在2015年每月平均SST的趋势图,如图5所示。图中红点是A点最热月平均SST。图5中显示,该点6月、8月和9月份的月平均SST明显高于最热月平均SST,说明该时间下的热点值大于0,有可能发生珊瑚礁白化现象。为了进一步监测可能发生白化的具体日期,以6月份为例,提取6月份每天SST数据并绘出其变化趋势,如图6

图5

图5   2015年A点月平均SST变化趋势

Fig.5   Monthly average of SST at point A in 2015


图6

图6   2015年6月份A点的SST变化趋势

Fig.6   Daily value of SST at point A in June,2015


图6可看出,2015年6月7—30日的SST明显高于A点6月最热月平均温度值,说明该月温度相对于多年同月份偏高且时间较长,极有可能已经给珊瑚礁带来热胁迫,该地区的珊瑚礁发生白化的可能性较大。因此,分别选取该时间段内(4周)的SST数据以及相应的近12周的SST数据作为实验数据,以此求出每天的白化热点和相应的DHW。选取有代表性的6 d(5,7,12,18,23和28日),如图7—8所示,可以看出,A点附近在6月18日左右的热点值最大,而且热点值有向北移动的趋势。

图7

图7   2015年6月份6 d的白化热点

Fig.7   Bleaching hotspots of 6 days in June,2015


图8

图8   2015年6月份6 d的周热度

Fig.8   Degree heating weeks of 6 days in June,2015


图8中,南海区域在6月18日、23日和28日的DHW较大,说明该区域在最近3个月内的热点累积较大,该区域的珊瑚礁发生白化的可能性较大。

根据白化预警分级标准进行判断,每7 d作出一幅白化预警分级最大值图(图9),并获得2015年6月份的白化预警分级最大值(图10)。

图9

图9   2015年6月份4周的白化预警分级最大值

Fig.9   Maximum of bleaching alert area of four weeks in June,2015


图10

图10   2015年6月份白化预警分级最大值

Fig.10   Map of the maximum of bleaching alert areas in June,2015


图10可看出,南海大部分区域属于白化监视(黄色区域)和白化警告(橘黄色区域)级别,其中白化监视级别说明该部分的热点取值范围为0~1 ℃,该区域内的珊瑚礁并没有太大危险; 白化警告级别说明该区域的DHW取值为0~4 ℃-周,热胁迫已经存在,对珊瑚礁已经产生影响,有可能导致珊瑚礁白化; 小部分属于白化警报级别1(红色区域),该区域的DHW取值为4~8 ℃-周,说明该区域的热胁迫已经对珊瑚礁的生存构成威胁,珊瑚礁发生白化的可能性较大。

4 结论

1)本文对使用NOAA发布的50 km与5 km空间分辨率的SST系列产品来监测珊瑚礁白化的方法进行了综述。通过对比2种空间分辨率的原始数据以及数据更新周期,阐述了不同空间分辨率的热点和周热度的计算方法,为以后开展珊瑚礁白化监测工作提供参考。

2)以中国南海为例,基于NOAA SST产品对该区域进行珊瑚礁白化监测分析,发现中国南海部分区域的珊瑚很可能已发生白化,分析结果显示中国南海大部分海域已达白化警告的级别,部分海域出现一级警报级别,说明该海域发生珊瑚礁白化的可能性较大,应当引起人们的重视。

3)目前,我国珊瑚礁白化监测研究工作尚未成熟,由于缺乏实地监测数据,无法实地验证南海区域珊瑚礁白化情况。本文采用CRW提出的监测方法所做的研究案例表明,中国南海部分区域很可能已发生珊瑚礁白化,所以有必要借鉴CRW的监测方法开展相关研究,例如发展珊瑚礁白化监测算法、选择适应于我国海域的预警阈值标准、基于更高空间分辨率的SST数据开发适合于我国的珊瑚礁白化监测产品以及开发珊瑚礁白化预警业务运行系统等,以此监测珊瑚礁白化程度并管理和保护好珊瑚礁生态系统。

参考文献

秦昭, 王汶松 .

珊瑚礁卑微生命筑造的地质奇观

[J].中国国家地理, 2009(1):54-70.

URL     [本文引用: 2]

澳洲大堡礁有“海底天堂”的美誉,红海岸礁让人惊讶于沿岸不毛之地与它生命活力的反差,无疑,珊瑚礁是海洋最绚烂多彩的部分,同时,它们还是价值很高的自然资源,相当于陆地上的热带雨林。但是,珊瑚的生仔正受到来自各方向的威胁,这些伸向珊瑚的魔爪有哪些呢?它们对美丽而脆弱的“海底花园”造成了什么样的破坏?让我们一起潜入热带海洋去看看。

Qin Z, Wang W S .

Coral reefs,geological wonders made of humble life

[J].Chinese National Geography, 2009(1):54-70.

[本文引用: 2]

Liu G, Heron S F, Eakin C M , et al.

Reef-scale thermal stress monitoring of coral ecosystems:New 5-km global products from NOAA coral reef watch

[J]. Remote Sensing, 2014,6(11):11579-11606.

DOI:10.3390/rs61111579      URL     [本文引用: 5]

The U.S. National Oceanic and Atmospheric Administration (NOAA) Coral Reef Watch (CRW) program has developed a daily global 5-km product suite based on satellite observations to monitor thermal stress on coral reefs. These products fulfill requests from coral reef managers and researchers for higher resolution products by taking advantage of new satellites, sensors and algorithms. Improvements of the 5-km products over CRW’s heritage global 50-km products are derived from: (1) the higher resolution and greater data density of NOAA’s next-generation operational daily global 5-km geo-polar blended sea surface temperature (SST) analysis; and (2) implementation of a new SST climatology derived from the Pathfinder SST climate data record. The new products increase near-shore coverage and now allow direct monitoring of 95% of coral reefs and significantly reduce data gaps caused by cloud cover. The 5-km product suite includes SST Anomaly, Coral Bleaching HotSpots, Degree Heating Weeks and Bleaching Alert Area, matching existing CRW products. When compared with the 50-km products and in situ bleaching observations for 2013–2014, the 5-km products identified known thermal stress events and matched bleaching observations. These near reef-scale products significantly advance the ability of coral reef researchers and managers to monitor coral thermal stress in near-real-time.

李淑, 余克服 .

珊瑚礁白化研究进展

[J]. 生态学报, 2007,27(5):2059-2069.

DOI:10.3321/j.issn:1000-0933.2007.05.047      URL     Magsci     [本文引用: 1]

珊瑚礁白化是由于珊瑚失去体内共生的虫黄藻和(或)共生的虫黄藻失去体内色素而导致五彩缤纷的珊瑚礁变白的生态现象。近年来,频繁发生的珊瑚礁白化导致了珊瑚礁生态系统严重退化,并已经影响到全球珊瑚礁生态系统的平衡,受到了人们的高度重视。研究认为:(1)大范围珊瑚礁白化主要是全球环境变化引起的,尤其是全球变暖和紫外辐射增强;(2)导致珊瑚礁白化的机制主要在于细胞机制和光抑制机制;(3)珊瑚礁白化后的恢复与白化程度有关,大范围白化的珊瑚礁完全恢复需要几年到几十年;(4)珊瑚礁白化的后果在于降低珊瑚繁殖能力、减缓珊瑚礁生长、改变礁栖生物的群落结构,导致大面积珊瑚死亡和改变珊瑚礁生态类型,如变为海藻型等;(5)&nbsp;与珊瑚共生的D系群虫黄藻更适应高温环境,珊瑚礁有可能通过D系群逐渐取代C系群的方式适应全球环境变化。

Li S, Yu K F .

Recent development in coral reef bleaching research

[J]. Acta Ecologica Sinica, 2007,27(5):2059-2069.

Magsci     [本文引用: 1]

潘艳丽, 唐丹玲 .

卫星遥感珊瑚礁白化概述

[J]. 生态学报, 2009,29(9):5076-5080.

DOI:10.3321/j.issn:1000-0933.2009.09.057      URL     Magsci     [本文引用: 1]

珊瑚礁白化是由于珊瑚失去体内共生的虫黄藻或者共生的虫黄藻失去体内色素而导致五彩缤纷的珊瑚礁变白的现象,严重的白化可以带来珊瑚礁的死亡。国内外研究表明海水温度升高和珊瑚礁白化关系最为紧密。卫星遥感能够提供大范围、同步与连续的海洋数据,如海水表层温度和海色数据,从而能够及时监测和预测珊瑚礁的白化。基于AVHRR (Advanced Very High Resolution Radiometer),NOAA(National Oceanic and Atmospheric Administration,US)开发了全球监测珊瑚礁白化的方法,热点(HotSpot)和周热度(DHW)两种主要指数。目前,我国珊瑚礁白化现象的监测和研究明显滞后于国际动态,迫切需要发展和利用卫星遥感的方法监测南海珊瑚礁白化状况。

Pan Y L, Tang D L .

General introduction to satellite remote sensing of coral reef bleaching

[J]. Acta Ecologica Sinica, 2009,29(9):5076-5080.

Magsci     [本文引用: 1]

Wilkinson C R.

Status of Coral Reefs of the World: 2002

[M]. Townsville:Australian Institute of Marine Science, 2002: 1-377.

[本文引用: 1]

Liu G, Strong A E, Skirving W.

Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching

[J]. EOS, 2003,84(15):137-144.

DOI:10.1029/2003EO150001      URL     [本文引用: 3]

Early in 2002, satellites of the U.S. National Oceanic and Atmospheric Administration (NOAA) detected anomalously high sea surface temperatures (SST) developing in the western Coral Sea, midway along Australia's Great Barrier Reef (GBR). This was the beginning of what was to become the most significant GBR coral bleaching event on record [Wilkinson, 2002]. During this time, NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) provided satellite data as part of ongoing collaborative work on coral reef health with the Australian Institute of Marine Science (AIMS) and the Great Barrier Reef Marine Park Authority (GBRMPA). These data proved invaluable to AIMS and GBRMPA as they monitored and assessed the development and evolution of SSTs throughout the austral summer, enabling them to keep stakeholders, government, and the general public informed and up to date.

余克服 .

南海珊瑚礁及其对全新世环境变化的记录与响应

[J]. 中国科学(地球科学), 2012,42(8):1160-1172.

[本文引用: 1]

Yu K F .

Coral reefs in the South China Sea:Their response to and records on past environmental changes

[J]. Science China (Earth Sciences), 2012,55(8):1217-1229.

[本文引用: 1]

Eakin C M, Morgan J A, Heron S F, et al.

Caribbean corals in crisis:Record thermal stress, bleaching, and mortality in 2005

[J]. PLoS One, 2010,5(11):e13969.

DOI:10.1371/journal.pone.0013969      URL     PMID:21125021      [本文引用: 2]

Abstract BACKGROUND: The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.

Wellington G M, Glynn P W, Strong A E , et al.

Crisis on coral reefs linked to climate change

[J]. EOS, 2001,82(1):1-5.

DOI:10.1029/01EO00001      URL     [本文引用: 2]

Since 1982, coral reefs worldwide have been subjected to an increased frequency of the phenomenon known as coral bleaching. Bleaching involves the dramatic loss of pigmented, single-celled endosymbiotic algae that live within the gastrodermal cells of a coral host that depends on this relationship for survival. Prior to the 1980s, and as early as the 1920s when coral reef research intensified, localized bleaching events were reported and attributed to factors such as extremely low tides, hurricane damage, torrential rainstorms, freshwater runoff near reefs, or toxic algal blooms [Glynn, 1993]. However, these early occurrences have recently been overshadowed by geographically larger and more frequent bleaching events whose impact has expanded to regional and global proportions.

Goreau T, McClanahan T, Hayes R , et al.

Conservation of coral reefs after the 1998 global bleaching event

[J]. Conservation Biology, 2000,14(1):5-15.

DOI:10.1046/j.1523-1739.2000.00011.x      URL     [本文引用: 1]

Large-scale coral bleaching has happenedrepeatedly in the Pacific and Indianoceans and the Caribbean since1982. Previously it was observed onlyon a small scale (Williams and Bunkley-Williams 1990;Jokiel & Coles 1990;Glynn 1988, 1991; Goreau et al. 1993;Goreau & Hayes 1994, 1995). The1998 bleaching event was globally themost extensive such event recordedexcept in the Caribbean and CentralPacific where a comparison of year-byyeartemperature and bleaching mapsshow that it was comparable with thelargest previous events (T.G. et al., unpublisheddata). Global analyses ofcoral bleaching are rare, but critical toan understanding of the widespreadecological effect of bleaching events.

Wilkinson C R.Status of Coral Reefs of the World:2008[M]. Townsville: Australian Institute of Marine Science, 2008: 296-296.

[本文引用: 2]

Yonge C M, Nicholls A G.

Studies on the Physiology of Corals:IV.the Structure,Distribution and Physiology of the Zooxanthellae

[R].Scientific Reports/Great Barrier Reef Expedition 1928—1929, 1931,1:135-176.

[本文引用: 1]

朱葆华, 王广策, 黄勃 , .

温度、缺氧、氨氮和硝氮对3种珊瑚白化的影响

[J]. 科学通报, 2004,49(17):1743-1748.

DOI:10.3321/j.issn:0023-074X.2004.17.010      URL     Magsci     [本文引用: 1]

珊瑚白化是指珊瑚失去共生藻或它们的色素或同时失去共生藻和色素而变白的现象. 关于海水养殖能否引起珊瑚白化, 特别是什么成分对珊瑚影响最大, 以及缺氧对珊瑚的影响, 至今很少有人研 究. 通过形态观察和显微镜计数研究了温度、缺氧、氨氮和硝氮对鹿角、钮扣、茉莉石3种珊瑚白化的影响. 结果表明, 随着温度的升高和溶氧的降低, 3种珊瑚释放的共生藻数目均逐渐增多, 白化程度加重. 另外, 只要0.001 mmol/L的氨态氮或硝态氮就能使3种珊瑚共生藻的释放明显增多, 随着其浓度的进一步增大, 除鹿角珊瑚外, 其他2种珊瑚共生藻的释放并没有显著增加. 而且, 不同宿主对珊瑚白化也有一定的影响.

Zhu B H, Wang G C, Huang B , et al.

Effects of temperature,hypoxia,ammonia and nitrate on the bleaching among three coral species

[J]. Chinese Science Bulletin, 2004,49(18):1923-1928.

Magsci     [本文引用: 1]

Perez S F, Cook C B, Brooks W R .

The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida

[J]. Journal of Experimental Marine Biology and Ecology, 2001,256(1):1-14.

DOI:10.1016/S0022-0981(00)00282-3      URL     PMID:11137501      [本文引用: 1]

Abstract Coral bleaching involves the loss of symbiotic dinoflagellates (zooxanthellae) from reef corals and other cnidarians and may be a stress response of the host, algae or both. To determine the role of zooxanthellae in the bleaching process, aposymbiotic sea anemones from Bermuda (Aiptasia pallida) were infected with symbionts from other sea anemones (Aiptasia pallida from Florida, Bartholomea annulata and Condylactis gigantea). The expulsion of algae was measured during 24-h incubations at 25, 32 and 34 degrees C. Photosynthetic rates of freshly isolated zooxanthellae were also measured at these temperatures. The C. gigantea (Cg) symbionts were expelled in higher numbers than the other algae at 32 degrees C. Photosynthesis by the Cg algae was completely inhibited at this temperature, in contrast to the other symbionts. At 34 degrees all of the symbionts had increased expulsion rates, and at this temperature only the symbionts from Florida A. pallida exhibited any photosynthesis. These results provide the first evidence that the differential release of symbionts from the same host species is related to decreased photosynthesis at elevated temperatures, and support other findings suggesting that zooxanthellae are directly affected by elevated temperatures during bleaching events.

Iglesias-Prieto R, Matta J L, Robins W A , et al.

Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture

[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(21):10302-10305.

DOI:10.1073/pnas.89.21.10302      URL     PMID:11607337      [本文引用: 1]

Abstract Elevated temperature (28-34 degrees C) has been hypothesized as the primary cause of the loss of algal endosymbionts in coral reef-associated invertebrates, a phenomenon observed on a world-wide scale over the last decade. In past studies of this "bleaching" phenomenon, there has been an underlying assumption that temperature adversely affects the animal hosts, the algae thereby being relegated to a more passive role. Because photosynthesis is a sensitive indicator of thermal stress in plants and has a central role in the nutrition of symbiotic invertebrates, we have tested the hypothesis that elevated temperature adversely affects photosynthesis in the symbiotic dinoflagellate Symbiodinium microadriaticum. The results, based on analyses of light-mediated O2 evolution and in vivo fluorescence, indicate that photosynthesis is impaired at temperatures above 30 degrees C and ceases completely at 34-36 degrees C. These observations are discussed in the context of possible mechanisms that may function in the disassociation of algal-invertebrate symbioses in response to elevated temperature.

Bhagooli R, Hidaka M .

Comparison of stress susceptibility of in hospite and isolated Zooxanthellae among five coral species

[J]. Journal of Experimental Marine Biology and Ecology, 2003,291(2):181-197.

DOI:10.1016/S0022-0981(03)00121-7      URL     [本文引用: 1]

Coral species in a similar habitat often show different bleaching susceptibilities. It is not understood which partner of coral–zooxanthellae complexes is responsible for differential stress susceptibility. Stress susceptibilities of in hospite and isolated zooxanthellae from five species of corals collected from shallow water in Okinawa were compared. To estimate stress susceptibility, we measured the maximum quantum yields ( F v / F m ) of in hospite and isolated zooxanthellae after 3-h exposure to either 28 or 34 °C at various light intensities and their recovery after 12 h under dim light at 26 °C. Significant reduction in photochemical efficiency ( F v / F m ) of photosystem II (PSII) was observed in in hospite zooxanthellae exposed to high light intensity (1000 μmol quanta m 612 s 611 ), while PSII activity of isolated zooxanthellae decreased significantly even at a lower light intensity (70 μmol quanta m 612 s 611 ). The recovery of the PSII activity after 12 h was incomplete in both in hospite and isolated zooxanthellae, indicating the presence of chronic photoinhibition. The stress susceptibility of isolated zooxanthellae was more variable among species than in hospite zooxanthellae. The order of stress susceptibility among the five coral species was different between in hospite and isolated zooxanthellae. The present results suggest that the host plays a significant role in determining bleaching susceptibility of corals, though zooxanthellae from different host have different stress susceptibilities.

Warner M E, Fitt W K, Schmidt G W .

Damage to photosystem Ⅱ in symbiotic dinoflagellates:A determinant of coral bleaching

[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(14):8007-8012.

DOI:10.1073/pnas.96.14.8007      URL     PMID:10393938      [本文引用: 1]

Abstract Coral bleaching has been defined as a general phenomenon, whereby reef corals turn visibly pale because of the loss of their symbiotic dinoflagellates and/or algal pigments during periods of exposure to elevated seawater temperatures. During the summer of 1997, seawater temperatures in the Florida Keys remained at or above 30 degrees C for more than 6 weeks, and extensive coral bleaching was observed. Bleached colonies of the dominant Caribbean reef-building species, Montastrea faveolata and Montastrea franksi, were sampled over a depth gradient from 1 to 17 m during this period of elevated temperature and contained lower densities of symbiotic dinoflagellates in deeper corals than seen in previous "nonbleaching" years. Fluorescence analysis by pulse-amplitude modulation fluorometry revealed severe damage to photosystem II (PSII) in remaining symbionts within the corals, with greater damage indicated at deeper depths. Dinoflagellates with the greatest loss in PSII activity also showed a significant decline in the D1 reaction center protein of PSII, as measured by immunoblot analysis. Laboratory experiments on the temperature-sensitive species Montastrea annularis, as well as temperature-sensitive and temperature-tolerant cultured symbiotic dinoflagellates, confirmed the temperature-dependent loss of PSII activity and concomitant decrease in D1 reaction center protein seen in symbionts collected from corals naturally bleached on the reef. In addition, variation in PSII repair was detected, indicating that perturbation of PSII protein turnover rates during photoinhibition at elevated temperatures underlies the physiological collapse of symbionts in corals susceptible to heat-induced bleaching.

Lesser M P, Shick J M .

Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida:Primary production,photoinhibition,and enzymic defenses against oxygen toxicity

[J]. Marine Biology, 1989,102(2):243-255.

DOI:10.1007/BF00428286      URL     [本文引用: 1]

Cnidarians which contain symbiotic algae are constantly faced with the challenges of a changing photic regime and a hyperoxic environment. Zooxanthellae ( Symbiodinium sp.) from the sea anemone Aiptasia pallida (Verrill), collected and cultured at Bermuda Biological Station in 1986, exhibit a suite of compensatory responses to changes in irradiance, ultraviolet radiation (UV), and to the toxicity resulting from their interaction with photosynthetically produced oxygen. Superoxide dismutase (SOD) and catalase inactivate superoxide radicals (O 2 - ) and hydrogen peroxide (H 2 O 2 ), which are mediators of oxygen toxicity, show an increase in specific activity with irradiance and in response to UV, both in cultured zooxanthellae (CZ) and freshly isolated zooxanthellae (FIZ) from acclimated anemones. CZ and FIZ exposed to environmentally realistic UV levels show a 30 to 40% increase in SOD activities compared with zooxanthellae exposed to similar irradiances without UV. CZ consistently show higher activities of both SOD and catalase compared to FIZ. Both CZ and FIZ exhibit changes in chlorophyll content and in the relationship between photosynthesis and irradiance which suggest photoadaptive changes in CO 2 -fixing enzymes, the photosynthetic-electron transport system, or in photosynthetic unit size (PSU). UV has a greater effect on the photosynthetic capacity ( P max ) of FIZ when compared to CZ acclimated at an equivalent irradiance with or without a UV component. UV also enhances the photoinhibition observed at high irradiance in both CZ and FIZ. Differences in enzyme activity between CZ and FIZ suggest an important role for the host in the protection of zooxanthellae against the direct effects of environmentally realistic UV while the photosynthetic performance of zooxanthellae in situ may not be as well protected.

Glynn P W, D’Croz L.

Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality

[J]. Coral Reefs, 1990,8(4):181-191.

DOI:10.1007/BF00265009      URL     [本文引用: 2]

Berkelmans R, Willis B L .

Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef

[J]. Coral Reefs, 1999,18(3):219-228.

DOI:10.1007/s003380050186      URL     [本文引用: 1]

Experimental studies of the upper thermal limits of corals from Orpheus Island, an inshore reef in the central Great Barrier Reef, show that Acropora formosa has a 5-day 50%-bleaching threshold of between 31 and 3265°C in summer, only 2 to 365°C higher than local mean summer temperatures (2965°C). Summer bleaching thresholds for Pocillopora damicornis and A. elseyi were 165°C higher (between 32 and 3365°C). The winter bleaching threshold of Pocillopora damicornis was 165°C lower than its summer threshold, indicating that seasonal acclimatisation may take place. This seasonal difference raises the possibility that at least some corals may be capable of short-term thermal acclimatisation. Neither P. damicornis nor A. elseyi showed habitat-specific (reef flat versus reef slope) differences in bleaching thresholds. Further, colonies of P. damicornis collected from sites 361km apart also showed no difference in bleaching threshold despite populations of this species responding differently at these two sites during a natural bleaching event. The bleaching thresholds determined in this study are best considered as the maximum tolerable temperatures for local populations of these species because they were determined in the absence of additional stressors (e.g. high light) which often co-occur during natural bleaching events. We consider the 5-day 50% bleaching thresholds determined in these experiments to be fair indicators of upper thermal limits, because >50% of a sample population died when allowed to recover in situ. We found a delay of up to a month in the bleaching response of corals following thermal stress, a result that has implications for identifying the timing of stressful conditions in natural bleaching events.

Strong A E, Liu G, Meyer J , et al.

Coral reef watch 2002

[J]. Bulletin of Marine Science, 2004,75(2):259-268.

[本文引用: 2]

Goreau T J, Hayes R L .

Coral bleaching and ocean “Hot Spots”

[J]. AMBIO - A Journal of the Human Environment, 1994,23(3):176-180.

[本文引用: 2]

Montgomery R S, Strong A E .

Coral bleaching threatens ocean,life and coral bleaching

[J]. EOS, 1994,75(13):145-147.

URL     [本文引用: 2]

Liu G, Rauenzahn J L, Heron S F , et al.

NOAA Coral Reef Watch 50 km Satellite Sea Surface Temperature-Based Decision Support System for Coral Bleaching Management

[R].NOAA Technical Report NESDIS 143,Washington, DC:NOAA, 2013: 33.

[本文引用: 1]

Strong A E, Barrientos C S, Duda C, et al.

Improved satellite techniques for monitoring coral reef bleaching

[C]//Proceedings of the 8th International Coral Reef Symposium.Panama:[s.n.], 1997.

[本文引用: 2]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发