国土资源遥感, 2018, 30(2): 87-92 doi: 10.6046/gtzyyg.2018.02.12

技术方法

面向对象的倾斜摄影测量点云分类方法

何雪,, 邹峥嵘, 张云生, 杜守基, 郑特

中南大学地球科学与信息物理学院,长沙 410083

Object-oriented classification method for oblique photogrammetric point clouds

HE Xue,, ZOU Zhengrong, ZHANG Yunsheng, DU Shouji, ZHENG Te

School of Geosciences and Info-Physics,Central South University, Changsha 410083, China

第一联系人:

第一作者: 何 雪(1994-),女,硕士研究生,主要从事数字摄影测量方面的研究。Email: csuhx_snow@163.com

收稿日期: 2016-09-20   修回日期: 2016-11-28   网络出版日期: 2018-06-15

基金资助: 卫星测绘技术与应用国家测绘地理信息局重点实验室开放基金项目“卫星影像与稀疏三维点联合高精度处理方法研究”.  编号: KLSMTA-201505
国家重点基础研究发展计划资助项目(“973”计划)“高分辨率遥感影像的目标特征描述与数学建模”.  编号: 2012CB719903
国家自然科学基金项目“自适应三角形约束的多角度影像多基元匹配方法”.  编号: 41201472
水能资源利用关键技术湖南省重点实验室开放基金项目“近景摄影测量库岸滑坡监测关键技术研究”.  编号: PKLHD201310

Received: 2016-09-20   Revised: 2016-11-28   Online: 2018-06-15

Fund supported: .  编号: KLSMTA-201505
.  编号: 2012CB719903
.  编号: 41201472
.  编号: PKLHD201310

摘要

随着影像密集匹配方法的发展,目前可以从多视倾斜航空影像获得大量类比于激光扫描数据密度甚至精度的点云,但获取结果以着色的点云为主,缺乏分类信息。针对此问题,提出了一种面向对象的倾斜摄影测量点云分类方法。首先,计算单点特征向量; 然后,利用SLIC(simple linear iterative clustering)算法将点云对应的影像分割成超像素,再根据点云和影像间的关系,将点云聚类成超体素对象,并计算每个对象的特征向量; 在此基础上,采用随机森林算法对超体素进行分类; 最后,根据语义信息对分类结果进行后处理获得最终的点云分类结果。2组典型实验数据结果表明,总体分类精度分别达到91.2%和88.1%,比基于单点的分类方法分别提高了2.3%和8.2%。

关键词: 点云分类 ; 点云特征 ; 倾斜影像 ; 面向对象 ; 随机森林

Abstract

With the development of image dense matching method, point clouds can be obtained from multi-view oblique aerial images, whose accuracy and density can be comparable with LiDAR point clouds. However, the currently derived colored point clouds lack classification information. In view of such a situation, this paper proposes an object-based classification method for oblique photogrammetric point clouds. The first step of this method is to calculate features of each point. Then, SLIC algorithm is used to divide the corresponding image into super-pixels. After that, point clouds are clustered into super-voxels as objects according to the relationship between point clouds and images, and features of each object are calculated afterwards. Random forests algorithm is used to classify these super-voxels. Finally, contextual information is adopted to optimize the initial classification results. Two sets of data were employed for evaluating the proposed method, and the overall accuracy could reach up to 91.2% and 88.1% respectively, which improves the precision by 2.3% and 8.2% compared with the point-based classification.

Keywords: point clouds classification ; features of point clouds ; oblique image ; object-oriented ; random forests

PDF (3177KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何雪, 邹峥嵘, 张云生, 杜守基, 郑特. 面向对象的倾斜摄影测量点云分类方法. 国土资源遥感[J], 2018, 30(2): 87-92 doi:10.6046/gtzyyg.2018.02.12

HE Xue, ZOU Zhengrong, ZHANG Yunsheng, DU Shouji, ZHENG Te. Object-oriented classification method for oblique photogrammetric point clouds. REMOTE SENSING FOR LAND & RESOURCES[J], 2018, 30(2): 87-92 doi:10.6046/gtzyyg.2018.02.12

0 引言

得益于影像密集匹配技术[1,2]和机载激光扫描技术[3]的发展,可以方便地获取高精度、高密度的三维点云数据,这些点云数据可以应用于三维城市建模、灾害评估、地图更新和城市规划等方面[4]。近年来,倾斜航空摄影技术得到了迅速的发展(如国内的SWDC-5,TopDC和AMC-580等),可以通过密集匹配方法从多角度航空倾斜影像中获取具有立面信息的高密度点云,也称为倾斜摄影测量点云。然而,这些点云数据并不具备语义信息,点云分类成为点云应用的关键所在,高精度的点云分类具有极大的研究价值和现实意义。

目前,针对激光点云分类的方法较多,Gerke等[5]采用图割算法,综合归一化高度、法向量的Z分量、影像上线段长度、颜色和纹理等特征将LiDAR点云分成建筑物、树木、草地和地面4类; Guan等[6]采用随机森林分类方法,综合基于光谱的特征、基于LiDAR的几何特征以及强度特征将LiDAR点云分成建筑物、树木、地面和草地4类; Xu等[4]通过点、平面和均值漂移3方面的特征对LiDAR点云进行分类,并比较了AdaBoost、随机森林、ANN_MLP(artificial neural networks multiple layer perceptrons)、支持向量机(support vector machine,SVM)和Rule-based这5种分类器的分类效果; 徐宏根等[7]根据三角网坡度信息熵,利用面向对象的方式对LiDAR点云的植被和建筑物进行区分。然而,和倾斜航空摄影技术相比,激光扫描技术获得建筑物立面的点较少,故倾斜摄影测量点云的应用[8,9,10]具有广泛的需求。目前针对摄影测量点云的分类较少,比较有代表性的包括: Rau等[11]提出基于规则的层次语义面向对象分类方法,综合几何、光谱和拓扑特征将倾斜摄影测量点云分类成树木、草地、立面、屋顶和道路5类,该方法需要较多的阈值; Gerke等[12]比较了监督分类和非监督分类2类方法在倾斜摄影测量点云分类上的应用效果,但主要针对比较简单的场景。

综上,本文提出一种面向对象的倾斜摄影测量点云监督分类方法。由于在监督分类方法中,随机森林算法和SVM分类精度相当[13],且在计算效率、对异常值和噪声的鲁棒性、内部误差估计和变量重要性等方面具有优越性[6],因此本文采用随机森林分类器进行分类。根据目标对象的颜色和几何等特征将点云分成屋顶、地面、植被和立面4类。本文方法流程如图1 所示。

图1

图1   本文方法流程

Fig.1   Overview flowchart of the method in this paper


1 分类方法

1.1 点云特征计算

本文分类方法采用的特征如下:

1)法向量nx,nynz。每一点的法向量定义为对其k (本文取 k=8) 邻域内的点进行最小二乘拟合得到的平面法向量。

2)颜色信息B,GR。其值分别为影像每个像素蓝光、绿光和红光3通道的DN值,在影像密集匹配时直接获取。

3)归一化高程Nz。本文利用文献[14]方法分离地面点并内插得到数字地形模型(digital terrain model,DTM),然后每一点减去DTM的对应高度以获取归一化高度。

4)绿信比Gr。由于植被区域绿光波段DN值一般比红光和蓝光波段DN值高,因此本文采用绿信比来区分植被[8],即

Gr= GR+G+B。 (1)

5)局部拟合平面垂直度fv。假设平面方程为

ax+by+cz+d=0 , (2)

式中: x,yz为点的坐标; a,b,cd为平面拟合方程的参数。那么,fv定义为

fv(pi)= c, (3)

式中pi为第i个点。fv的取值范围为(0,1),当拟合平面接近于铅垂面时,fv的值趋近于1。

6)局部平面拟合度fp。通常情况下,建筑物屋顶比较规则,多由平面组成,而植被区表面不规则,因此平面拟合度可以作为一个分类特征,即

fp(pi)= e-j=1ndjn, (4)

式中: n为邻域点数; dj为第j个邻域点到平面的距离。计算平面拟合度时,利用一定邻域内的点拟合一个平面,然后计算所有拟合该平面的点到该平面距离的负数指数幂作为fpfp的取值范围为(0,1),局部邻域越接近于平面,fp的值越小。

1.2 对象分割与特征计算

本文采用的点云为SURE软件[15]生成的密集点云,每一张影像对应一个点云文件。并采用间接的方法获得点云对象,即首先利用简单线性迭代聚类(simple linear iterative clustering,SLIC)算法将点云对应的影像分割成超像素,该算法仅需要指定超像素的数量m[16]; 然后,利用共线方程将点云投影到影像上; 再根据超像素分割的结果将点云聚类成不同的超体素,作为本文分类的对象。在获取了点云对象之后,根据对象中所包含的单点的特征向量,采用式(5)计算对象的特征向量,即

fo= l=1NflN, (5)

式中: fo表示对象的特征向量; fl表示第l个单点的特征向量; N表示一个对象中包含的单点数量。

1.3 随机森林算法

随机森林算法由Breiman 于2001年提出[17]。该算法的基本思想是用随机的方式建立一个森林,森林中含有很多决策树,每一棵树都是二叉树的形式。在生成森林之后,当输入新的样本时,每棵决策树便会对其进行判断,然后根据所有的判断结果选出票数最多的作为最终的分类结果[18]

针对待处理的点云数据,首先选取了4个类别(建筑物屋顶、地面、植被和建筑物立面)的少量样本数据,然后选取20%的样本作为训练数据,剩余的样本作为测试数据。本文将点云特征构成的10维特征向量直接输入到随机森林分类器中,在训练分类器之后,利用测试数据评价分类正确率。由于对象的数量对分类结果有较大影响,因此本文测试了不同对象数量的分类效果,然后选择效果较好的分类器对所有待处理点云(即总体数据)进行分类。

1.4 后处理优化

初始分类结果中不可避免地存在错误分类,因此本文进一步利用上下文关系对初始分类结果进行优化。首先,对分类结果进行联通分析,将具有邻接关系的同类点云聚成簇; 然后,根据上下文关系对其进行优化处理,具体包括以下3个规则: ①对于屋顶簇,如果屋顶周围没有立面,则认为该屋顶是错分的,根据其邻域中所占比例最高的类别来修正其类别; ②对于地面簇,如果地面的周围只有屋顶,则将该地面修正为屋顶; ③对于立面簇,如果立面周围没有屋顶,则该立面是错分的,根据其邻域中所占比例最高的类别来修正其类别。

2 实验与分析

2.1 数据准备

为了验证本文方法,采用了如图2所示的2组数据进行实验。该点云(如图2(a)和(d)所示)均由SWDC-5影像生成,密度约为20~30 pt/m2图2(b)和(e)分别为彩色点云对应的原始影像,图2(c)和(f)分别为将点云投影到原始影像上的叠加效果,从图2(c)和(f)可以看出点云并没有完全覆盖原始影像,所以当影像分割成一定的超像素时,实际需要分类的对象数量小于该数值。本文参考数据由人工在原始影像上进行标注,精度评定时,将分类后的点云投影到原始影像上,与参考数据进行对比计算精度。

图2

图2   数据源

Fig.2   Data sources


由于对象的数量对分类结果有较大的影响,分别测试了m取80 000,100 000和150 000时的分类效果。表1为每组数据的训练集、测试集和总体数据的点云对象数量。

Tab.1   Experimental datasets(个)

数据编号m点云总体
对象数量
训练数据集测试数据集
屋顶地面植被立面屋顶地面植被立面
第1组80 00039 09711110753111440426210441
100 00048 00213612962133543515247531
150 00069 50419518386184776728340736
第2组80 00041 58662525548245205218192
100 00051 60673636557292250256227
150 00076 218104889580415352378316

新窗口打开| 下载CSV


2.2 分类器训练结果

根据不同的m值,利用表1所列的训练数据集和测试数据集分别进行了3次实验,表2为每次分类的Kappa系数和分类精度。

表2   分类器训练结果

Tab.2  Learning results of classifier

评价指标第1组第2组
m=80 000m=100 000m=150 000m=80 000m=100 000m=150 000
Kappa系数0.963 20.986 60.977 20.978 20.979 10.969 8
分类精度/%97.3099.0298.3398.3798.4497.74

新窗口打开| 下载CSV


表2可以看出,2组数据均在m=100 000时取得最佳分类结果。

图3分别描述了2组数据特征重要性直方图。

图3

图3   数据特征重要性

Fig.3   Importance of datasets features


图3可以看出nz,Nz,fv,Gr以及颜色特征对于分类具有重要作用,nx,nyfp作用相对较小; 当m取值不同时,各个特征的重要性基本一致。

2.3 总体数据分类实验结果

根据2.2节结果,本文采用m=100 000时训练的随机森林分类器对总体数据进行分类,然后对初始分类结果进行优化。结果可视化效果如图4所示。

图4

图4   分类结果可视化

Fig.4   Visualization for classification results


图4(a)和(c)为直接利用分类器的分类效果,图4(b)和(d)为优化以后的分类效果。从结果可以看出仅使用少量样本数据进行训练也可以取得较好的分类效果,经过优化后,初始分类结果中的一些错误分类进一步得到了改正。

为了实现与基于单点的分类方法进行对比,表3为2组总体数据基于单点、面向对象和面向对象分类并优化后的分类精度。

表3   总体分类精度

Tab.3  Overall accuracy(%)

分类方法第1组第2组
基于单点的分类方法88.979.9
面向对象的分类方法90.084.9
面向对象的分类方法优化后91.288.1

新窗口打开| 下载CSV


表3中可以看出,即使没有对面向对象的分类方法进行后处理,其总体分类精度也都高于基于单点的分类方法,2组实验数据的总体分类精度分别比基于单点的分类方法提高1.1%和5.0%,充分说明了面向对象分类方法的优势。经过优化处理后,2组数据分类精度分别为91.2%和88.1%,比优化前分别提高了1.2%和3.2%,说明了优化方法的有效性。

2.4 误差分析

分类误差主要包括以下2种情况: ①参考数据中,地面上的物体被标注为地面(例如汽车),因此会导致存在一些错分的对象,如图5(a)所示,车顶为绿色的汽车被分类为植被; ②由于阴影的存在和样本选择的不适当会导致一些区域错误地分成植被,如图5(b)所示。

图5

图5   错误分类示例

Fig.5   Examples of error classification


3 结论

针对倾斜摄影测量点云分类,提出了一种面向对象的点云分类方法。本文利用影像分割的结果将对应的点云聚类为不同的对象,采用随机森林分类器进行分类,并且针对分类错误,利用上下文关系优化初始分类的结果。采用2组典型实验数据来验证本文方法的有效性,本文方法的总体分类精度分别达到91.2%和88.1%,比基于单点的分类方法分别提高了2.3%和8.2%。

本文方法仍存在一些不足之处。首先,需要挖掘更多更有效的特征来提高分类精度; 其次,摄影测量点云的质量对分类结果有很大的影响,因此,开发更好的立体影像密集匹配算法会进一步提高分类精度; 最后,选取样本时应更加全面,例如不同建筑物的屋顶颜色和高度会差异很大,因此需要尽量多选择不同种类的屋顶。

参考文献

Hirschmüller H.

Accurate and efficient stereo processing by semi-global matching and mutual information

[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,USA:IEEE, 2005: 807-814.

[本文引用: 1]

Hirschmüller H .

Stereo processing by semiglobal matching and mutual information

[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(2):328-341.

DOI:10.1109/TPAMI.2007.1166      URL     [本文引用: 1]

Wehr A, Lohr U .

Airborne laser scanning:An introduction and overview

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54(2/3):68-82.

DOI:10.1016/S0924-2716(99)00011-8      URL     [本文引用: 1]

This tutorial paper gives an introduction and overview of various topics related to airborne laser scanning (ALS) as used to measure range to and reflectance of objects on the earth surface. After a short introduction, the basic principles of laser, the two main classes, i.e., pulse and continuous-wave lasers, and relations with respect to time-of-flight, range, resolution, and precision are presented. The main laser components and the role of the laser wavelength, including eye safety considerations, are explained. Different scanning mechanisms and the integration of laser with GPS and INS for position and orientation determination are presented. The data processing chain for producing digital terrain and surface models is outlined. Finally, a short overview of applications is given.

Xu S, Vosselman G, Elberink S O .

Multiple-entity based classification of airborne laser scanning data in urban areas

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,88:1-15.

DOI:10.1016/j.isprsjprs.2013.11.008      URL     [本文引用: 2]

Meanwhile, we compared the performances of five classifiers. The rule-based method provides the highest overall accuracy at 97.0%. The rule-based method provides over 99.0% accuracy for the ground and roof classes, and a minimum accuracy of 90.0% for the water, vegetation, wall and undefined object classes. Notably, the accuracy of the roof element class is only 70% with the rule-based method, or even lower with other classifiers. Most roof elements have been assigned to the roof class, as shown in the confusion matrix. These erroneous assignments are not fatal errors because both a roof and a roof element are part of a building. In addition, a new feature which indicates the average point space within the planar segment is generalised to distinguish vegetation from other classes. Its performance is compared to the percentage of points with multiple pulse count in planar segments. Using the feature computed with only average point space, the detection rate of vegetation in a rule-based classifier is 85.5%, which is 6% lower than that with pulse count information.

Gerke M, Xiao J .

Fusion of airborne laser scanning point clouds and images for supervised and unsupervised scene classification

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,87:78-92.

DOI:10.1016/j.isprsjprs.2013.10.011      URL     [本文引用: 1]

Results for the ISPRS benchmark test data show that to rely on color information to separate vegetation from non-vegetation areas does mostly lead to good results, but in particular in shadow areas a confusion between classes might occur. The unsupervised classification strategy is especially sensitive in this respect. As far as the point cloud densification is concerned, we observe similar sensitivity with respect to color which makes some planes to be missed out, or false detections still remain. For planes where the densification is successful we see the expected enhancement of the outline.

Guan H Y, Li J, Chapman M , et al.

Integration of orthoimagery and Lidar data for object-based urban thematic mapping using random forests

[J]. International Journal of Remote Sensing, 2013,34(14):5166-5186.

DOI:10.1080/01431161.2013.788261      URL     [本文引用: 2]

Using high-spatial-resolution multispectral imagery alone is insufficient for achieving highly accurate and reliable thematic mapping of urban areas. Integration of lidar-derived elevation information into image classification can considerably improve classification results. Additionally, traditional pixel-based classifiers have some limitations in regard to certain landscape and data types. In this study, we take advantage of current advances in object-based image analysis and machine learning algorithms to reduce manual image interpretation and automate feature selection in a classification process. A sequence of image segmentation, feature selection, and object classification is developed and tested by the data sets in two study areas (Mannheim, Germany and Niagara Falls, Canada). First, to improve the quality of segmentation, a range image of lidar data is incorporated in an image segmentation process. Among features derived from lidar data and aerial imagery, the random forest, a robust ensemble classifier, is then used to identify the best features using iterative feature elimination. On the condition that the number of samples is at least two or three times the number of features, a segmentation scale factor has no particular effect on the selected features or classification accuracies. The results of the two study areas demonstrate that the presented object-based classification method, compared with the pixel-based classification, improves by 0.02 and 0.05 in kappa statistics, and by 3.9% and 4.5% in overall accuracy, respectively.

徐宏根, 王建超, 郑雄伟 , .

面向对象的植被与建筑物重叠区域的点云分类方法

[J]. 国土资源遥感, 2012,24(2):23-27.doi: 10.6046/gtzyyg.2012.02.05.

URL     Magsci     [本文引用: 1]

在分析LiDAR点云数据分类现状的基础上,针对植被与建筑物重叠区域分类困难的问题,提出了一种基于面向对象的点云分类方法。首先采用三角网渐进内插的滤波方法将点云分为地面点和非地面点,并得到DTM; 然后对高出DTM一定高度的非地面点建立三角网,删除较长的三角网的边(地物间的边),从而将非地面点云分割成多个对象; 再利用各个对象内的三角网坡度信息熵大小判断该对象属于植被或建筑物; 最后对于难以区分的对象(植被与建筑物重叠区)根据建筑物几何规则形状延伸扩充,从而提高植被和建筑物重叠区的点云分类准确率。实验结果表明,该方法能够很好地区分建筑物和植被点,分类准确率达到87%。

Xu H G, Wang J C, Zheng X W , et al.

Object-based point clouds classification of the vegetation and building overlapped area

[J]. Remote Sensing for Land and Resources, 2012,24(2):23-27.doi: 10.6046/gtzyyg.2012.02.05.

Magsci     [本文引用: 1]

Rothermel M, Haala N.

Potential of dense matching for the generation of high quality digital elevation models

[C]//International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences.Hannover,Germany:ISPRS, 2011: 331-343.

[本文引用: 2]

Debella-Gilo M, Bjørkelo K, Breidenbach J , et al.

Object-based analysis of aerial photogrammetric point cloud and spectral data for land cover mapping

[C]//Proceedings of 2013 International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,Volume XL-1/W1.Hannover,Germany:ISPRS, 2013: 63-67.

[本文引用: 1]

Xiao J, Gerke M, Vosselman G .

Building extraction from oblique airborne imagery based on robust façade detection

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,68:56-68.

DOI:10.1016/j.isprsjprs.2011.12.006      URL     [本文引用: 1]

A large number of applications and research fields rely on up-to-date and accurate representation of existing buildings, for example in GIS or 3D city models. Besides verification of existing building datasets, the detection of new objects from remote sensing data is a major task in digital photogrammetry. This paper presents a new approach on building detection and simple reconstruction using airborne oblique images only. Fa ades are detected in oblique images using edge and height information. The latter is extracted from the same images using a dense image matching technique, implying the need for stereo overlap at the particular fa ade. The fa ades are represented as vertical planes in object space and are used to define building hypotheses. These initial buildings are then verified and refined employing the point cloud as derived from multiple image dense matching. The method has been tested on almost 400 buildings in two areas which include different building structures. The results show that the detection rate depends on the number of viewing directions available at a particular building. A building is considered to be detected as soon as any portion of it is detected by our algorithm. Accordingly the correctness is constant above 90%, demonstrating the robustness of the approach. The completeness varies from 67% to 95%, while the geometric accuracy is limited because only box models are fitted to fa ades. Thus, the next step in the research will be to adapt the outline delineation to irregular buildings.

Rau J Y, Jhan J P, Hsu Y C .

Analysis of oblique aerial images for land cover and point cloud classification in an urban environment

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(3):1304-1319.

DOI:10.1109/TGRS.2014.2337658      URL     [本文引用: 1]

In addition to aerial imagery, point clouds are important remote sensing data in urban environment studies. It is essential to extract semantic information from both images and point clouds for such purposes; thus, this study aims to automatically classify 3-D point clouds generated using oblique aerial imagery (OAI)/vertical aerial imagery (VAI) into various urban object classes, such as roof, facade, road, tree, and grass. A multicamera airborne imaging system that can simultaneously acquire VAI and OAI is suggested. The acquired small-format images contain only three RGB spectral bands and are used to generate photogrammetric point clouds through a multiview-stereo dense matching technique. To assign each 3-D point cloud to a corresponding urban object class, we first analyzed the original OAI through object-based image analyses. A rule-based hierarchical semantic classification scheme that utilizes spectral information and geometry- and topology-related features was developed, in which the object height and gradient features were derived from the photogrammetric point clouds to assist in the detection of elevated objects, particularly for the roof and facade. Finally, the photogrammetric point clouds were classified into the aforementioned five classes. The classification accuracy was assessed on the image space, and four experimental results showed that the overall accuracy is between 82.47% and 91.8%. In addition, visual and consistency analyses were performed to demonstrate the proposed classification scheme's feasibility, transferability, and reliability, particularly for distinguishing elevated objects from OAI, which has a severe occlusion effect, image-scale variation, and ambiguous spectral characteristics.

Gerke M, Xiao J .

Supervised and unsupervised MRF based 3D scene classification in multiple view airborne oblique images

[C]//Proceedings of 2013 ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences.Antalya,Turkey:ISPRS, 2013: 25-30.

[本文引用: 1]

孙杰, 赖祖龙 .

利用随机森林的城区机载LiDAR数据特征选择与分类

[J]. 武汉大学学报(信息科学版), 2014,39(11):1310-1313.

Magsci     [本文引用: 1]

针对机载LiDAR系统数据分类中多源特征与城区分类目标相关性不明确的问题,在面向对象的数据特征挖掘基础上,提出了一种基于随机森林的机载LiDAR系统特征选择与分类方法,利用不同地区数据实验证明:本文方法能对机载LiDAR系统数据多源特征的重要性进行正确评估,通过特征选择,在减少特征的情况下仍能够达到较高的分类精度。

Sun J, Lai Z L .

Airborne LiDAR feature selection for urban classification using random forests

[J]. Geomatics and Information Science of Wuhan University, 2014,39(11):1310-1313.

Magsci     [本文引用: 1]

Hu H, Ding Y L, Zhu Q , et al.

An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,92:98-111.

DOI:10.1016/j.isprsjprs.2014.02.014      URL     [本文引用: 1]

The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data; however, such filtering processes are difficult because of the complex configuration of the terrain features. The classical filtering algorithms rely on the cautious tuning of parameters to handle various landforms. To address the challenge posed by the bundling of different terrain features into a single dataset and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter (ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor to control the data pyramid scheme in which the processing window sizes are reduced progressively, and the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle noise. Using the progressive densification strategy, regularization and self-adaption, both performance improvement and resilience to parameter tuning are achieved. When tested against the benchmark datasets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding an average total error of 2.85% when optimized and 3.67% when using the same parameter set.

Rothermel M, Wenzel K, Fritsch D , et al.

SURE:Photogrammetric surface reconstruction from imagery

[C]//Proceedings of 2012 LC3D Workshop.Berlin,Germany:[s.n], 2012: 1-9.

[本文引用: 1]

Achanta R, Shaji A, Smith K , et al.

SLIC superpixels compared to state-of-the-art superpixel methods

[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.

DOI:10.1109/TPAMI.2012.120      URL     PMID:22641706      [本文引用: 1]

Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.

Breiman L .

Random forests

[J]. Machine Learning, 2001,45(1):5-32.

DOI:10.1023/A:1010933404324      URL     [本文引用: 1]

Guo L, Chehata N, Mallet C , et al.

Relevance of airborne Lidar and multispectral image data for urban scene classification using random forests

[J]. ISPRS Journal of Photogrammetry and remote Sensing, 2011,66(1):56-66.

DOI:10.1016/j.isprsjprs.2010.08.007      URL     [本文引用: 1]

Airborne lidar systems have become a source for the acquisition of elevation data. They provide georeferenced, irregularly distributed 3D point clouds of high altimetric accuracy. Moreover, these systems can provide for a single laser pulse, multiple returns or echoes, which correspond to different illuminated objects. In addition to multi-echo laser scanners, full-waveform systems are able to record 1D signals representing a train of echoes caused by reflections at different targets. These systems provide more information about the structure and the physical characteristics of the targets. Many approaches have been developed, for urban mapping, based on aerial lidar solely or combined with multispectral image data. However, they have not assessed the importance of input features. In this paper, we focus on a multi-source framework using aerial lidar (multi-echo and full waveform) and aerial multispectral image data. We aim to study the feature relevance for dense urban scenes. The Random Forests algorithm is chosen as a classifier: it runs efficiently on large datasets, and provides measures of feature importance for each class. The margin theory is used as a confidence measure of the classifier, and to confirm the relevance of input features for urban classification. The quantitative results confirm the importance of the joint use of optical multispectral and lidar data. Moreover, the relevance of full-waveform lidar features is demonstrated for building and vegetation area discrimination.

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发