国土资源遥感, 2018, 30(3): 181-188 doi: 10.6046/gtzyyg.2018.03.25

基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究

徐彬仁1,2, 魏瑗瑗,1,2

1. 中国科学院遥感与数字地球研究所,北京 100101

2. 中国科学院大学,北京 100049

Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm

XU Binren1,2, WEI Yuanyuan,1,2

1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者: 魏瑗瑗(1992-),女,硕士研究生,主要从事大气遥感方面的研究。Email:weiyy@radi.ac.cn

责任编辑: 李瑜

收稿日期: 2017-03-2   修回日期: 2017-04-12   网络出版日期: 2018-09-15

Received: 2017-03-2   Revised: 2017-04-12   Online: 2018-09-15

作者简介 About authors

徐彬仁(1990-),男,硕士研究生,主要从事大气遥感方面的研究。Email:xubr@radi.ac.cn。 。

摘要

提高气象数据空间分辨率对水文、气象和生态等领域的流域尺度研究至关重要。青藏高原气候变化在全球气候研究中占有重要的位置,并且对局域降水分布的研究在大气科学中处于基础地位。为获取青藏高原地区准确、有效、更高空间分辨率的降水数据,基于随机森林算法,引入植被和地形因子,采用热带降水测量计划卫星(Tropical Rainfall Measuring Mission, TRMM)3B43降水数据(0.25°×0.25°)、NOAA-AVHRR归一化植被数(normalized difference vegetation index,NDVI)数据(8 km×8 km)、航天飞机雷达地形测绘任务(Shuttle Radar Topography Mission,SRTM)数字高程模型(digital elevation model,DEM)数据(90 m×90 m)以及经纬度信息,建立了非线性空间统计降尺度模型,最终获得8 km分辨率降水降尺度结果。另外,采用将时间序列分析和非线性回归分析融合的方法,基于2000—2012年TRMM年均降水数据和NDVI数据,建立降水量时间尺度预测模型。分析结果表明,综合考虑植被和地形因子对青藏高原地区降水空间分布的影响,基于随机森林算法建立的降尺度模型,其降尺度结果与地面站点测量值拟合系数为0.89,高于TRMM数据与地面站点测量值的拟合系数0.81,说明降尺度结果提高了卫星遥感降水数据的空间分辨率。另外,降水预测模型能够较好地描述青藏高原地区的年际降水变化趋势和数量级,2006—2012年的预测降水量与TRMM降水数据拟合系数均高于0.80。

关键词: 青藏高原 ; 降水量 ; 降尺度 ; 预测 ; 随机森林 ; 时间序列

Abstract

So far, precipitation products with high spatial resolution have been crucial for the basin scale hydrology, meteorology and ecology. The climate in the Tibetan Plateau is of vital significance to global climate variation. So, the study of the distribution of precipitation with high spatial resolution is in the basic position of environmental science. Based on random-forest algorithm, the authors introduced environmental factors such as topography and vegetation, which was developed for downscaling the remote sensing precipitation products accurately and effectively. The non-linear spatial statistical downscaling model was demonstrated with the Tropical Rainfall Measuring Mission (TRMM) 3B43 dataset with the spatial resolution of 0.25°, the Normalized Difference Vegetation Index (NDVI) from NOAA-AVHRR with the spatial resolution of 8km, the Digital Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM) with the spatial resolution of 90 m and the information of slope, aspect, longitude and latitude. And the model based on time series and vegetation factor, which was demonstrated with TRMM3B43 annual data in order to forecast the precipitation, was introduced in this paper. The downscaling results were validated by applying the observations from the rain gauges in the Tibetan Plateau and the coefficient of determination R 2 is 0.89. The analytical results showed that the downscaling results improved the spatial resolution and accuracy by applying the random-forest algorithm and introducing environmental factors. And the model, which was developed for forecasting the precipitation, captured the trends in inter-annual variability and the magnitude of annual precipitation with the R 2 ranging from 0.81 to 0.87.

Keywords: Tibetan Plateau ; precipitation ; downscale ; forecast ; Random-forest ; time series

PDF (3828KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究. 国土资源遥感[J], 2018, 30(3): 181-188 doi:10.6046/gtzyyg.2018.03.25

XU Binren, WEI Yuanyuan. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm. REMOTE SENSING FOR LAND & RESOURCES[J], 2018, 30(3): 181-188 doi:10.6046/gtzyyg.2018.03.25

0 引言

水循环促进了自然界的物质运动和能量交换,对气候的形成与变化产生了深刻影响。流域降水量是影响流域水循环最重要的因素。有“亚洲水塔”之称的青藏高原是亚洲大江大河的发源地,印度河、恒河、雅鲁藏布江、长江和黄河均源自青藏高原[1,2]。因此,青藏高原的流域的降水资料对我国乃至全球的水文、气象、生态和农业等领域的发展具有重要的研究意义。与气象站点降水资料相比,卫星资料空间覆盖连续,有助于解决研究区站点数量不足、分布不均匀的问题。但是,由于探测平台的限制,卫星遥感降水产品的分辨率仍然无法满足流域尺度研究的要求。为进一步了解青藏高原流域尺度上降水的时空分布特征,需要开展青藏高原遥感降水数据的空间降尺度方法的研究。

目前,空间降尺度方法主要有动力降尺度和统计降尺度2种。空间动力降尺度是借助全球环流模式(global climate models, GCMs)和嵌套区域气候模式(regional climate models, RCMs)来提高气象要素的空间分辨率。该方法不受观测资料的影响,但其计算量大、模型不易构造,获得的气象要素的空间分辨率不能满足区域尺度的要求[4]。统计降尺度充分考虑到局地气候不仅以大尺度气候为背景,且顾及下垫面特征的影响,利用下垫面特征信息建立大尺度和小尺度气候变量的联系[5]。与空间动力降尺度方法相比,统计降尺度方法构造的模型更加灵活多样,引入较高空间分辨率的区域下垫面特征变量,能大大提高遥感降水资料的空间分辨率[6]。2009年Immerzeel团队以欧洲南部伊比利亚半岛为例,基于降水与植被的关系,采用热带降水测量计划卫星(Tropical Rainfall Measuring Mission, TRMM)降水数据与SPOT -VEGETATION 归一化植被指数(normalized difference vegetation index, NDVI)数据,建立了的指数回归降尺度模型,最终将TRMM降水数据降尺度为1 km分辨率。基于Immerzeel的研究,2011年贾绍凤研究团队开展了柴达木盆地降水降尺度研究,同时引入了植被数据SPOT-VEGETATION NDVI和航天飞机雷达地形测绘任务地形数据(Shuttle Radar Topography Mission,SRTM) 数字高程模型(digital elevation model,DEM)因子作为流域降水的影响因子,建立了多元线性回归模型,也得到了1 km空间分辨率的降水数据 [8]。与Immerzeel团队的研究相比,后者引入DEM变量代表地形因子参与建模,并对降水的降尺度结果进行了误差分析,进一步提高了降水资料的准确性。此外,非线性时间序列可以提高降水的预测精度[16]。在诸多非参数统计回归模型中,随机森林算法在分类和预测方面对自变量的多元共线性不敏感,可以同时输入多个影响因子,在很大程度上解决了过度拟合的问题等。因此,本文基于Immerzeel和贾绍凤研究团队的研究和随机森林算法的优势,选择NDVI,DEM,坡度、坡向和经纬度信息,针对青藏高原流域的长时间序列TRMM遥感降水数据,开展了空间统计降尺度分析研究。

1 研究区概况

青藏高原平均海拔4 500 m,整体面积达250×104 km2,是世界上平均海拔最高的地区。独特的地理环境使其对亚洲地区以及世界气候具有重要的影响[1]。该地区地面气象观测站点主要集中于东部和南部,极少数分布在高原西部和北部,存在气象资料空间分布不匀及稀缺现象。已有站点大多安置于低海拔的交通可抵达区域,并且观测站测量的气象要素受其周围区域小气候影响较大[14]。为弥补青藏高原地区传统观测数据稀缺、受局地气候影响和空间分布不连续等不足,本文采用TRMM3B43降水数据开展了青藏高原地区降水量的空间统计降尺度研究。

受孟加拉湾暖湿空气的影响,雅鲁藏布江大拐弯区域年降水十分充沛; 高原的腹地湖泊数量较多,湖泊集聚区的降水分布普遍高于周围地区; 而受喜马拉雅山体影响,来自印度洋的水汽输送受到阻挡,喜马拉雅山北坡的降水明显少于周围地区。总体而言,青藏高原降水空间分布呈现自东南向西北递减、自南向北逐渐减少的趋势[14]

2 数据源及其处理

2.1 TRMM卫星降水数据与气象站降水数据

TRMM是世界上第一颗搭载测雨雷达的卫星,携带了微波成像仪、可见光和红外扫描仪[15]。TRMM3B43产品综合了4类相互独立的降水数据,包括微波、近红外等传感器融合估算数据,以及美国国家海洋、大气管理局和全球降水气候中心的降水雨量计分析数据等[14],是卫星降水数据与其他降水数据联合反演的最佳降水产品。本文选用2000—2012年间空间分辨率为0.25°×0.25°的TRMM3B43日降水产品,对青藏高原地区进行降水数据降尺度研究,数据由中国气象科学数据共享服务网站提供。此外,采用研究区内92个站点气象站点在2000—2012年间降水观测数据作为参照。与站点实测降水量相比,TRMM3B43数据产品普遍存在高估的现象(图1)。已有学者研究发现,利用最小二乘方法建立TRMM3B43与站点降水数据的幂函数回归模型,可以取得较好的校准效果[8]

图1

图1   气象站与TRMM降水数据的回归分析图

Fig.1   Regression analysis of precipitation data from weather station and TRMM


图1中,纵坐标表示气象站点年总降水量,横坐标是TRMM年均降水量,幂函数作为回归方程时,判断系数为0.78,拟合方程为

v=0.92·u0.95

式中: v为气象站年均实测降雨量; u为校准后的TRMM3B43年均降雨量。图中虚线为y=x线,由此可见经校准模型修正后的数据较好地克服了TRMM原始数据在研究区内对降雨量高估的问题。图2为青藏高原地区TRMM校准后的多年平均降水分布情况。

图2

图2   2001年青藏高原TRMM降水量空间分布图

Fig.2   Spatial distribution of TRMM precipitation in the Tibet Plateau in 2001


图2表明,青藏高原地区降水量空间分布极其不均匀,降水量空间分布呈现自东南向西北递减、自南向北逐渐减少的特点[14]; 局部地区受其他环境因子的影响,降水分布较为复杂。因此,考虑整个研究区内降水空间分布的整体趋势对模型的影响,本文建立了经纬度比值指标,即

ll(i,j)=lon(i,j)lat(i,j)

式中: ll(i,j)表示第i列第j行像元的经纬度比; lon(i,j)和lat (i,j)分别表示第i列第j行像元的经度和纬度。

2.2 归一化差值植被指数数据

已有研究表明,NDVI与其他景观地理学属性,如叶面积指数[17]、地表温度[18]、地表蒸散发[19]等有关,并且这些变量在世界不同区域均与降水有相关关系[11-12,20]。此外,甚高分辨率光谱仪(advanced very high resolution radiometer,AVHRR)的NDVI数据的时空覆盖范围广,与遥感降水产品相比,空间分辨率相对较高,可以有效地提高降水数据的空间分辨率。本次研究采用美国国家航空和宇宙航行局NASA官网提供的AVHRR-NDVI日产品作为降尺度模型的输入变量。

本文采用最大合成算法(maximum value composite,MVC)计算每个像元的月最大值,并计算每一年12个月最大NDVI数据的年平均值,应用最邻近像元法将8 km分辨率数据重采样为0.25°分辨率。图3以2001年为例,青藏高原地区年平均NDVI空间分布,可知植被分布的总体趋势,与降水量分布的总体趋势大致相同。

图3

图3   2001年青藏高原NOAA-AVHRR NDVI空间分布图

Fig.3   Spatial distribution of NDVI from NOAA-AVHRR in the Tibet Plateau in 2001


2.3 SRTM DEM数据

梭雷达地形测量任务是由美国国家地理空间情报局(NGA)和NASA共同推行的国际研究项目。其雷达系统可获得56°S~60°N近全球覆盖范围的数字高程模型,空间分辨率有30 m和90 m两种。本次研究采用青藏高原地区90 m分辨率的DEM数据,并变换为0.25°尺度。数据由http: //gdem.ersdac.jspacesystem.org提供。在模型建立的过程中,除DEM外,并根据青藏高原DEM数据提取坡向和坡度数据[21]

3 方法

3.1 降尺度方法

3.1.1 随机森林算法

随机森林算法(random forest,RF)在分类和预测方面具有优势,目前已被广泛地应用于降水和生态等诸多领域。20世纪80年代Breiman等人将分类树方法发展成为随机森林算法。与神经网络算法相比,其计算量小且精度较高。该算法的优点在于: ①对多种资料,可以产生高准确度的分类器; ②可处理大量的输入变量; ③在决定类别时,能够评估变量的重要性。鉴于降水与多个变量存在相关关系,模型不仅需要多个输入变量,而且有大量数据作为训练样本。因此,本次研究采用随机森林算法建立降尺度模型是可行的。

相比于神经网络和多元回归,随机森林算法作为集成学习方法,在分类和回归运算方面具有优越性,该算法已经被成功用于需水预测[15]和海表面盐度反演[16]的研究中。其建模步骤为: ①从原始训练样本中可重复地随机抽取M个样本; ②从解释变量中不重复地随机抽取N个样本,从抽中的变量中选择最能有效分割数据的变量,使分割的子集内部的变异性最小; ③依据步骤②得到的变量将数据分割为2个纯度较高的子集; ④对子集重复步骤③直到分割停止,即完成了单棵分类树的建模; ⑤重复步骤①—④X次,构建包含X棵树的随机森林模型; ⑥建立评价指标,检验模型的精度。

本文应用R软件中随机森林程序包作为建模工具,针对本文的研究问题进行建模,表1简单地罗列了该程序包中包含的主要函数。

表1   随机森林包主要函数名与功能

Tab.1  Random forest package main function name and function

函数名函数功能
Random Forest建立随机森林模型
Plot绘制误差曲线
Predict模型预测

新窗口打开| 下载CSV


3.1.2 模型的假设

已有研究表明,NDVI是降水量降尺度模型的重要输入因子。由于本文研究区内存在水体,它们对分析植被与降水的统计关系有很大的影响。因此,在建立模型的过程中不考虑NDVI小于等于零的样本,将其视为异常值从数据中剔除。

3.1.3 模型的准备与建立

本次研究基于随机森林算法,以2001年为例对校准后的TRMM降水数据进行降尺度方法的研究,步骤如下: ①分别将8个变量:降雨量(precipitation),降水与归一化差值植被指数(NDVI)、数字高程(DEM)、经纬度比值(ll)、坡向(aspect),坡度(slope),经度(lontitude)及纬度(lattitude)读入数组中,使每个数组对应位置的元素值代表图像中同一个像元的特征,并写入同一个矩阵中; ②剔除异常值; ③将数据随机分成大小相同的两组,组1数据作为建模样本,组2数据用来检验; ④利用R软件的建模工具,建立Random Forest模型; ⑤输入组2模型进行检验。

3.1.4 模型的应用

对上节中建立的模型进行有效性检验后,本节将对降水数据进行降尺度计算,具体步骤为: ①采用最邻近像元法将NDVI,DEM,ll,slope及aspect原始数据重采样为8 km×8 km分辨率数据; ②按照模型输入变量的数据格式,创建经纬度和经纬度比值数据; ③剔除异常值; ④输入已建立随机森林,计算8 km分辨率的降水量; ⑤采用最邻近像元法,对未进行降雨量预测的异常值像元进行降雨量插值; ⑥将上文获得的订正误差与预测值求和,计算得到降尺度结果; ⑦采用最邻近像元法获得与气象站位置对应像元降尺度结果,与气象站数据进行回归分析。

3.2 降水量的预测

降水量变化是典型的非线性时间序列,其中包含了大量的时序动态变化特征。由表2 可知,降水量与环境具有强相关性。目前常见的预测方法是将相关因子作为输入向量,建立多元回归预测模型,这种方法考虑了环境因子对降水时序变化的影响,但是缺乏时序动态分析,不能反映内部变化规律; 另一种常见的方法是时间序列分析,该方法充分考虑了降水变化的内部因子,却忽略了降水与外在因子之间的关联,进而影响预测精度。

表2   降水与其他变量的线性相关性

Tab.2  Linear correlation between precipitation and other variables

变量TRMMNDVIDEMllaspectslopelonlat
TRMM1.0000.570-0.2770.7880.0010.4320.398-0.703
NDVI0.5701.000-0.2770.702-0.0220.2800.682-0.391
DEM-0.277-0.2771.000-0.2040.076-0.086-0.476-0.171
ll0.7880.701-0.2031.000-0.0040.3450.675-0.780
aspect0.001-0.0210.076-0.0041.0000.009-0.0090.001
slope0.4320.280-0.0860.3450.0091.0000.137-0.318
lon0.3980.682-0.4760.675-0.0090.1371.000-0.074
lat-0.703-0.391-0.171-0.7800.001-0.318-0.0741.000

新窗口打开| 下载CSV


为了提高降水量预测精度,本次研究在考虑降水变化时序动态变化特征的同时,引入了环境因子,基于随机森林算法建立降水量的预测模型。步骤如下: 首先,需要为模型定阶,即判断降水受自身发生量影响的时效长短,采用F测验进行逐步比较确定,本次研究采用2000—2012年均降水数据作为研究对象,预测时效期为预测时间点的前5 a; 然后,将时效时间段内的发生量作为降水内部变化的描述因子,并选择NDVI作为外在影响因子,基于随机森林算法建立非线性预测模型; 将2000—2004年和2005年降水数据和2005年NDVI数据作为输入向量,建立预测模型,随后将2001—2005年降水数据和2006年NDVI数据作为输入向量,预测2006年降水量。4 结果分析与检验

4.1 降尺度模型的检验

为提高训练样本的合理性,采用随机方法生成样本个数相等的训练样本和检验样本,将表2中8个参数作为输入量,建立随机森林预测模型,对检验样本进行预测,以2001年降水数据为例,预测结果与校准后TRMM降水数据的比较图4所示。

图4

图4   随机森林模型预测值与校准的TRMM3B43检验值拟合图

Fig.4   Random forest model predictions and calibrated TRMM3B43 values


图4中,纵坐标代表对模型输入检验数据集的自变量后,输出的降水量的预测值,横坐标代表检验数据集中的TRMM校正值,两者的判断系数R2为 0.87。

4.2 模型的比较

鉴于贾绍凤团队采用线性回归模型,对柴达木盆地的TRMM降水产品进行降尺度研究,其模型取得了较好的检验精度。本文建立降水量与其他自然地理变量之间的线性回归模型,与随机森林模型比较。如表2列出了降水与归一化差值植被指数(NDVI)、数字高程(DEM)、经纬度比值(ll)、坡向(aspect)、坡度(slope)和经纬度(lon和lat)的线性相关性。

根据变量之间的线性相关系数明显可知,降雨量与另外7个变量之间的相关性差别较大。因此,本文采用向后逐步回归的方法,在0.25°分辨率下从模型包含所有预测变量开始,一次删除一个变量直到会影响模型变量(Akaike information criterion, AIC)为止,即

AIC=(2K-2L)/n
L=-n2×ln(2π)-n2×ln(ssen)-n2

式中: k为参数的数量; L为对数似然值; n为样本数目; sse为残差平方和。AIC的大小取决于Lkk取值越小,AIC越小; L取值越大,AIC值越小。k小表明模型简洁,L大表明模型精确。因此AIC和修正的决定系数类似,在评价模型是兼顾了简洁性和精确性。

经后向逐步回归分析后本文建立了降水与NDVI,DEM,slope,lon,lat和ll,6个变量(X1,X2,X3,X4,X5和X6)间多元线性回归模型(图5)。模型预测值与检验值的判断系数为0.77。鉴于模型拟合效果不如基于随机森林的降尺度模型效果好,本文选择后者对青藏高原地区降水数据进行降尺度研究。

图5

图5   多元线性模型预测值与校准的TRMM3B43检验值拟合图

Fig.5   Multivariate linear model predictions and calibrated TRMM3B43 values


4.3 降尺度结果与精度检验

为分析降尺度结果在研究区内空间分布的准确性,本次研究将TRMM校准值(图6)与8 km×8 km降尺度结果(图7)进行比较分析,随机森林输出结果的空间分布特点呈现从南到北、从东南到西北逐渐减小的趋势,与TRMM校准值的空间分布趋势相同,但是在具有特殊地理环境的局部区域,例如,在珠穆朗玛峰少雨区、祁连山脉多雨区和青藏高原腹地区域,降尺度结果不够理想。

图6

图6   2001年青藏高原TRMM降水校准值空间分布图

Fig.6   Spatial distribution of TRMM precipitation calibration value of Tibet Plateau in 2001


图7

图7   2001年青藏高原随机森林输出结果空间分布图

Fig.7   Spatial distribution of random forest output in the Tibet Plateau in 2001


因此,本次研究在此建模尺度上,预测0.25°分辨率的降水量,结合TRMM校准后降水值求出模型在该尺度上的误差分布,采用最邻近像元方法将结果插值为8 km×8 km分辨率的误差分布,结果如图8所示。将8 km×8 km误差分布与随机森林输出的8 km×8 km降水结果求和,即得到降尺度结果,如图9所示。

图8

图8   8 km×8 km空间分辨率误差分布图

Fig.8   8 km × 8 km spatial resolution error distribution


图9

图9   降尺度结果图

Fig.9   Downscaling results


本文采用回归系数R2作为检验标准对降尺度结果进行验证分析。TRMM校准值和降尺度结果与站点降水量回归分析图见图10。如图10所示,降尺度结果与气象站点降水观测量的判断系数为0.89,提高了原始数据的空间分辨率。同时与0.25°校准数据(与站点数据判断系数为0.81)相比,提高了数据与站点数据的拟合系数。因此,采用随机森林算法对研究区进行降尺度计算,不仅将降水数据的空间分辨率从0.25°提高到8km,而且提高了降水数据的准确度。

图10

图10   TRMM校准值和降尺度结果与站点降水量回归分析图

Fig.10   TRMM calibration and downscaling results with site precipitation analysis


4.4 降水量预测方法结果与检验

图11分别为研究区内5个观测站点降水量测量值和预测结果随时间变化的曲线。5个站点依次为昌都站(31.15°N,97.17°E)、那曲站(31.48°N,92.07°E)、林芝站(29.67°N,94.33°E)、拉萨站(29.7°N,91.13°E)和日喀则站(29.25°N,88.88°E)。分析表明,在5个观测站点处的降水量预测值有效地描述了降水的年际变化趋势和降水量的数量级。

图11

图11   5个站点观测值与预测值的年际变化曲线

Fig.11   Interannual variation of observed and predicted values for five sites


采用上述预测方法,预测结果与原始TRMM降水数据的拟合系数见表3

表3   2006—2012年预测结果与校准后的TRMM降水量拟合系数

Tab.3  Predicted results for 2006—2012 and TRMM precipitation fitting coefficient after calibration

年份2006
2007
2008
2009
2000
2010
2011
2012
R20.870.870.850.810.850.870.850.87

新窗口打开| 下载CSV


4.5 降水数据精度对结果精度的影响

本文采用TRMM3B43产品进行降尺度研究。该产品综合了4类相互独立的降水数据,包括微波、近红外等传感器融合估算数据,以及美国国家海洋、大气管理局和全球降水气候中心的降水雨量计分析数据等[14],是卫星降水数据与其他降水数据联合反演的最佳降水产品。首先,数据产品本身存在误差,该误差可能由2方面引起: ①在观测4类相互独立降水数据的过程中引入了误差; ②使用联合反演算法进行数据融合的过程中引入了误差。其次,本次研究采用站点观测数据虽对TRMM3B43原始数据进行了校准,但所用的站点数据较少且分布不匀,导致校准模型在校准过程中引入了误差。以上各种误差均可影响降水数据的真实性,进而降低了降尺度结果的精度。

4.6 输入变量对结果精度的影响

降水是受多种因素影响的气象要素。本次研究仅仅考虑了植被和地形因素对其产生的作用,忽略了气候带、海陆位置、季风和人类活动等因素对降水的影响。另外,本次研究模型的输入变量并不具有相互独立性,在一定程度上降低了模型的有效性,因而影响了降尺度结果的准确性。

影响预测结果精度的因素主要有2个方面: ①统计模型缺乏物理机制,无法充分描述内部和外部因子对降水变化的影响。②本次研究所采用的降水数据为TRMM3B43的2000—2012年间的年均降水数据,时间尺度较短,因而影响了时间序列分析的有效性和准确性,使预测结果无法达到理想的精度。

5 结论

基于已有青藏高原的遥感降水等资料,本文根据降水与植被和地形因子的相关关系,使用TRMM3B43降水、NOAA-AVHRR NDVI和SRTM DEM等数据,采用随机森林算法建立了0.25°尺度下的降尺度模型,并求出了该尺度下的误差分布,采用最邻近像元方法插值为8 km分辨率,结合8 km模型预测值计算得出了青藏高原降水分布的降尺度结果。经分析验证,降尺度结果与地面站点降水量观测数据的R2为0.89,高于TRMM3B43校准值与地面站点降水量观测数据的R2(0.81)。此外,综合考虑内部因子和外部因子对降水变化的影响,基于随机森林算法,融合时间序列分析和多元回归分析,建立降水量预测模型,有效地描述了降水的年际变化趋势和降水量的数量级,并且2000—2012年均降水量预测结果与TRMM3B43降水数据拟合系数均达到0.8以上。因此本研究得出了下述认识:

1)基于下垫面因子和随机森林算法的降尺度方法,能够较准确地估计实际降水情况,不仅可提高卫星遥感降水产品的空间分辨率,同时可提高原始数据的反演精度。

2)融合时间序列分析的降水预测模型,可以有效地描述降水的年际变化趋势和降水量的数量级。

参考文献

吴国雄 .

我国青藏高原气候动力学研究的近期进展

[J]. 第四季研究, 2004,24(1):1-9.

[本文引用: 2]

Wu G X .

Recent progress in the study of the Qinghai-Xizang plateau climate dynamics in China

[J]. Quaternary Sciences, 2004,24(1):1-9.

[本文引用: 2]

Immerzeel W W ,

Van Beek L P H,Bierkens M F P.Climate change will affect the Asian water towers

[J]. Science, 2010,32(8):1382-1385.

[本文引用: 1]

程珂, 朱祯, 李铭 , .

TRMM3B43降水产品在西藏地区的精度检验和应用

[J]. 水利水电技术, 2014,45(1):44-46.

Magsci    

以西藏地区38个国家基准站和基本站的实测降水资料,利用双线性插值、相关系数、散点斜率和相对误差等指标,对热带降水测量卫星(TRMM)的3B43降水产品的精度进行检验和分析。结果表明:月尺度上,整体而言TRMM3B43降水产品与实测降水量具有较好的一致性,其中西藏西部和东部喜马拉雅山脉东段北麓地区相关性相对较差,平均相对误差较大。年尺度上TRMM3B43降水产品的相关性不如月尺度好,平均相对误差随统计数值的增大而减小。在应用TRMM3B43降水产品进行流域面雨量估算时,采用气象站点实测降水资料校准TRMM3B43降水产品的T-G联合法,对TRMM3B43降水产品进行订正。

Cheng K, Zhu Z, Li M , et al.

Application and accuracy testing of TRMM3B43 rainfall product in Tibetan Region

[J]. Water Resources and Hydropower Engineering, 2014,45(1):44-46.

Magsci    

刘永和, 郭维栋, 冯锦明 , .

气象资料的统计降尺度方法综述

[J]. 地球科学进展, 2011,26(8):837-847.

Magsci     [本文引用: 1]

<p>统计降尺度是解决由气象模式输出的低分辨率资料到流域尺度资料转换的手段之一,已成为一个重要的研究领域。统计降尺度方法十分丰富,分为传递函数法、天气形势法和天气发生器3类,3类之间并无严格的界限。统计降尺度涉及到时间与空间降尺度、随机型与确定型降尺度、时间自相关与空间相关性以及面向格点与面向站点的降尺度这4个方面的属性与分类问题,各种具体方法在这些方面的表现有所不同。近年来,相似法、隐马尓可夫模型、广义线性模型、Poisson点过程以及乘性瀑布过程获得了较大的发展和应用,并诞生了各种非线性模型以及物理&mdash;统计模型等新方法,已有一些影响较大的统计降尺度模型软件。新的方法在不断涌现,其中非线性模型、气候情境随机模拟技术、短期预报资料降尺度技术以及结合物理机理的统计降尺度方法是未来的主要发展趋势。</p>

Liu Y H, Guo W D, Feng J M , et al.

A summary of methods for statistical downscaling of meteorological data

[J]. Advances in Earth Science, 2011,26(8):837-847.

Magsci     [本文引用: 1]

Zorita E, Hughes J P, Lettemaier D P .

Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation

[J]. Journal of Climate, 1995,8(5):1023-1042.

DOI:10.1175/1520-0442(1995)008&lt;1023:SCORCP&gt;2.0.CO;2      URL     [本文引用: 1]

Charles S P, Bates B C, Hughes J P .

A spatiotemporal model for downscaling precipitation occurrence and amounts

[J]. Journal of Geophysical Research: Atmospheres, 1999,104(D24):31657-31669.

DOI:10.1029/1999JD900119      URL     [本文引用: 1]

A stochastic model that relates synoptic atmospheric data to daily precipitation at a network of gages is presented. The model extends the nonhomogeneous hidden Markov model (NHMM) of Hughes et al. by incorporating precipitation amounts. The NHMM assumes that multisite, daily precipitation occurrence patterns are driven by a finite number of unobserved weather states that evolve temporally according to a first-order Markov chain. The state transition probabilities are a function of observed or modeled synoptic scale atmospheric variables such as mean sea level pressure. For each weather state we evaluate the joint distribution of daily precipitation amounts at n sites through the specification of n conditional distributions. The conditional distributions consist of regressions of transformed amounts at a given site on precipitation occurrence at neighboring sites within a set radius. Results for a network of 30 daily precipitation gages and historical atmospheric circulation data in southwestern Australia indicate that the extended NHMM accurately simulates the wet-day probabilities, survival curves for dry- and wet-spell lengths, daily precipitation amount distributions at each site, and intersite correlations for daily precipitation amounts over the 15 year period from 1978 to 1992.

Immerzeel W W, Rutten M M, Droogers P .

Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula

[J]. Remote Sensing of Environment, 2009,113(2):362-370.

DOI:10.1016/j.rse.2008.10.004      URL    

Precipitation data with accurate, high spatial resolution are crucial for improving our understanding of basin scale hydrology. We explore the relation between precipitation estimates derived from the Tropical Rainfall Monitoring Mission (TRMM) and the normalized difference vegetation index (NDVI) for different spatial scales on the Iberian Peninsula in southern Europe, using time series from 2001 to 2007. Analysis shows that NDVI is a good proxy for precipitation. On an annual basis an exponential function best describes the relation between NDVI and precipitation. The optimum relation between NDVI and precipitation is found at an approximate scale of 75 100 km. This is an intermediate scale and it is likely that at smaller scales NDVI is determined primarily by anthropogenic land use and at larger scales factors such as geology, soils, and temperature play an increasingly important role. The fact that both TRMM and NDVI are subject to bias due to orbital deviations, atmospheric conditions and imperfect retrieval algorithms could also influence the scale dependency. The derived relation between NDVI and precipitation is used to develop a new downscaling methodology that uses coarse scale TRMM precipitation estimates and fine scale NDVI patterns. The downscaled precipitation estimates are subsequently validated using an independent precipitation dataset. The downscaling procedure resulted in significant improvements in correlation, bias, and root mean square error for average annual precipitation over the whole period, for a dry year (2005), and a wet year (2003).

Jia S F, Zhu W B, Lyu A F , et al.

A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China

[J]. Remote Sensing of Environment, 2011,115(12):3069-3079.

DOI:10.1016/j.rse.2011.06.009      URL     [本文引用: 2]

Grist J, Nicholson S E, Mpolokang A .

On the use of NDVI for estimating rainfall fields in the Kalahari of Botswana

[J]. Journal of Arid Environments, 1997,35(2):195-214.

DOI:10.1006/jare.1996.0172      URL    

Abstract This article presents the results of an experiment to estimate rainfall from the normalized difference vegetation index (NDVI). The study was carried out in the semi-arid region of south and southern Botswana, principally the Kalahari desert, where few rainfall-reporting stations exist. A statistical regression between NDVI and rainfall is developed for four areas with diverse soil conditions. These are used to estimate rainfall at an independent station or group of stations. The estimates reliably capture both the seasonal cycle and inter-annual variability. These regressions are used to produce a map of mean annual rainfall for the period 1982 to 1993, based on NDVI data, for the region 22 to 27 S and 20 to 26 E. The estimates are verified using all data available in the Meteorological Services' archive for these years.

Onema J M K, Taigbenu A .

NDVI-rainfall relationship in the Semliki watershed of the equatorial Nile

[J]. Physics and Chemistry of the Earth,Parts A/B/C, 2009,34(13/16):711-721.

DOI:10.1016/j.pce.2009.06.004      URL    

The use of remotely sensed data to describe, study, monitor and provide greater understanding on watershed’s landscape dynamics have proven to be useful worldwide, especially where timely and reliable ground information are neither available nor accessible like in most of the developing world. This paper, thus presents the first documented relationship between NDVI and rainfall in humid central Africa, and serves as a precursor in the understanding of the interaction between catchment characteristics and water resources of the Semliki region. This study investigates spatial and temporal relationship between NDVI and satellite-derived rainfall. Normalized Difference Vegetation Index (NDVI) time series derived from the NOAA–AVHRR (National Oceanic and Atmospheric Administration–Advanced Very High Resolution Radiometer) satellite data and FEWS satellite-derived rainfall are analyzed. The Semliki watershed (23,621 km 2) of the equatorial Nile basin is the study area. Monthly NDVI time series of 21 Semliki’s subcatchments (S3–S23) over 7 years (2001–2007) were processed and extracted with Windisp 5.1 from 10-day NDVI maximum value composite images. At the monthly time step, only 12 subcatchments had weak positive correlation (0.23–0.42) at 5% significance level and the rest were not significantly correlated. Incorporating a 1-month lag effect increased the correlation coefficients between the two variables (0.28–0.68) with 17 subcatchments being significantly correlated at the designated level. The topography within the catchment was found to play a defining role for NDVI values. S15, S16, S18 and S20, the subcatchments covering the Mount Ruwenzori characterized by elevations up to 4862 m above sea level, consistently recorded the lowest values of NDVI over time and no significant correlation could be established between rainfall and NDVI.

Iwasaki H .

NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data

[J]. Journal of Arid Environments, 2009,73(4/5):557-562.

DOI:10.1016/j.jaridenv.2008.12.007      URL     [本文引用: 1]

Kummerow C, Barnes W, Kozu T , et al.

The Tropical Rainfall Measuring Mission (TRMM) sensor package

[J]. Journal of Atmospheric and Oceanic Technology, 1998,15(3):809-817.

DOI:10.1175/1520-0426(1998)015&lt;0809:TTRMMT&gt;2.0.CO;2      URL     [本文引用: 1]

Huffman G J, Bolvin D T, Nelkin E J , et al.

The TRMM multisatellite precipitation analysis (TMPA):Quasi-global,multiyear,combined-sensor precipitation estimates at fine scales

[J]. Journal of Hydrometeorology, 2007,8(1):38-55.

DOI:10.1175/JHM560.1      URL    

齐文文, 张百平, 庞宇 , .

基于TRMM数据的青藏高原降水的空间和季节分布特征

[J]. 地理科学, 2013,33(8):999-1005.

Magsci     [本文引用: 5]

<p>庞大的青藏高原不仅影响其周围的气候,也影响整个亚洲甚或全球的气候,而且本身还形成了独特的高原气候。但高原上气象观测站点极为稀少,降水资料奇缺,难以完整、深刻地认识高原降水的时空分布格局。选用热带降雨测量计划卫星(Tropical Rainfall Measuring Mission,TRMM)3B43 月尺度降水率数据,并根据114 个气象站点数据与TRMM数据的差额和克里格球形插值模型对原数据进行了修正,克服了原数据低值高估、高值低估的问题,并以此分析了青藏高原1998~2011 年的多年平均降水的空间格局与季节分布特征。研究结果证实了青藏高原降水的空间格局呈现自东南向西北递减、自南向北逐渐减少的基本分布规律,包括喜马拉雅山北坡雨影区、高原西北部&ldquo;寒旱核心&rdquo;的存在;还发现了一些新的规律,包括阿里喀喇昆仑山少雨区、高原腹地相对湿润区、横断山脉中心相对干旱区等。高原降水的季节分配不均匀,其中,西、北部春(3~5 月)、秋(9~11 月)和冬(12~2 月)的降水占全年降水比例均为20%~30%,夏季(6~8 月)降水稍多,比例为30%~40%;东南部降水主要集中在夏季,比例高达40%~60%,春、秋降水比例为20%~30%,冬季降水比例低于10%。</p>

Qi W W, Zhang B P, Pang Y , et al.

TRMM-Data-Based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau

[J]. Scientia Geographica Sinica, 2013,33(8):999-1005.

Magsci     [本文引用: 5]

明均仁, 肖凯 .

基于R语言的面向需水预测的随机森林方法

[J].统计与决策, 2012(9):81-83.

[本文引用: 2]

Ming J R, Xiao K . Random forest method for water demand prediction based on R language[J].Statistics & Decision, 2012(9):81-83.

[本文引用: 2]

常青, 赵晓莉 .

时间序列模型在降水量预测中的应用研究

[J]. 计算机仿真, 2011,28(7):204-206,276.

[本文引用: 2]

Chang Q, Zhao X L .

Research on precipitation prediction based on time series model

[J]. Computer Simulation, 2011,28(7):204-206,276.

[本文引用: 2]

Andersen J, Dybkjaer G, Jensen K H , et al.

Use of remotely sensed precipitation and leaf area index in a distributed hydrological model

[J]. Journal of Hydrology, 2002,264(1/4):34-50.

DOI:10.1016/S0022-1694(02)00046-X      URL     [本文引用: 1]

Remotely sensed precipitation from METEOSAT data and leaf area index (LAI) from NOAA AVHRR data is used as input data to the distributed hydrological modelling of three subcatchments (82,000 km 2) in the Senegal River Basin. Further, root depths of annual vegetation are related to the temporal and spatial variation of LAI. The modelling results are compared with results based on conventional input of precipitation and vegetation characteristics. The introduction of remotely sensed LAI shows improvements in the simulated hydrographs, a marked change in the relative proportions of actual evapotranspiration comprising canopy evaporation, soil evaporation and transpiration, while no clear trend in the spatial pattern could be found. The remotely sensed precipitation resulted in similar model performances with respect to the simulated hydrographs as with the conventional raingauge input. A simple merging of the two inputs did not result in any improvement.

Raynolds M K, Comiso J C, Walker D A , et al.

Relationship between satellite-derived land surface temperatures,arctic vegetation types,and NDVI

[J]. Remote Sensing of Environment, 2008,112(4):1884-1894.

DOI:10.1016/j.rse.2007.09.008      URL     [本文引用: 1]

Bogh E, Sogaard H .

Remote sensing based estimation of evapotranspiration rates

[J]. International Journal of Remote Sensing, 2004,25(13):2535-2551.

DOI:10.1080/01431160310001647975      URL     [本文引用: 1]

A remote sensing based method is presented for calculating evapotranspiration rates (位E) using standard meteorological field data and radiometric surface temperature recorded for bare soil, maize and wheat canopies in Denmark. The estimation of 位E is achieved using three equations to solve three unknowns; the atmospheric resistance (rae), the surface resistance (rs) and the vapour pressure at the surface (es) where the latter is assessed using an empirical expression. The method is applicable, without modification, to dense vegetation and moist soil, but for a dry bare soil, where the effective source of water vapour is below the surface, the temperature of the evaporating front (Ts*) can not be represented by the measured surface temperature (Ts). In this case (Ts-Ts*) is assessed as a linear function of the difference between surface temperature and air temperature. The calculated 位E is comparable to latent heat fluxes recorded by the eddy covariance technique.

Onema J M K, Taigbenu A .

NDVI-rainfall relationship in the Semliki watershed of the equatorial Nile

[J]. Physics and Chemistry of the Earth,Parts A/B/C, 2009,34(13/16):711-721.

DOI:10.1016/j.pce.2009.06.004      URL     [本文引用: 1]

The use of remotely sensed data to describe, study, monitor and provide greater understanding on watershed’s landscape dynamics have proven to be useful worldwide, especially where timely and reliable ground information are neither available nor accessible like in most of the developing world. This paper, thus presents the first documented relationship between NDVI and rainfall in humid central Africa, and serves as a precursor in the understanding of the interaction between catchment characteristics and water resources of the Semliki region. This study investigates spatial and temporal relationship between NDVI and satellite-derived rainfall. Normalized Difference Vegetation Index (NDVI) time series derived from the NOAA–AVHRR (National Oceanic and Atmospheric Administration–Advanced Very High Resolution Radiometer) satellite data and FEWS satellite-derived rainfall are analyzed. The Semliki watershed (23,621 km 2) of the equatorial Nile basin is the study area. Monthly NDVI time series of 21 Semliki’s subcatchments (S3–S23) over 7 years (2001–2007) were processed and extracted with Windisp 5.1 from 10-day NDVI maximum value composite images. At the monthly time step, only 12 subcatchments had weak positive correlation (0.23–0.42) at 5% significance level and the rest were not significantly correlated. Incorporating a 1-month lag effect increased the correlation coefficients between the two variables (0.28–0.68) with 17 subcatchments being significantly correlated at the designated level. The topography within the catchment was found to play a defining role for NDVI values. S15, S16, S18 and S20, the subcatchments covering the Mount Ruwenzori characterized by elevations up to 4862 m above sea level, consistently recorded the lowest values of NDVI over time and no significant correlation could be established between rainfall and NDVI.

李晓民, 张焜, 李冬玲 , .

青藏高原札达地区多年冻土遥感技术圈定方法与应用

[J]. 国土资源遥感, 2017,29(1):57-64.doi: 10.6046/gtzyyg.2017.01.09.

[本文引用: 1]

Li X M, Zhang K, Li D L . et al.

Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau

[J]. Remote Sensing for Land and Resources, 2017,29(1):57-64.doi: 10.6046/gtzyyg.2017.01.09.

[本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发