基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类
|
国贤玉, 李坤, 王志勇, 李宏宇, 杨知
|
Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy
|
Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG
|
|
表3 2种分类方法的分类精度比较
|
Tab.3 Comparison of classification accuracy between the two methods
|
|
方法 | 分类参数 | TH | TJ | DJ | 水体 | 城镇建筑 | 总体精 度/% | Kappa系数 | 生产者精 度/% | 用户精 度/% | 生产者精 度/% | 用户精 度/% | 生产者精 度/% | 用户精 度/% | 生产者精 度/% | 用户精 度/% | 生产者精 度/% | 用户精 度/% | SVM | T1-12-3① | 99.42 | 41.90 | 1.18 | 58.23 | 64.56 | 78.38 | 99.82 | 99.87 | 92.08 | 99.75 | 83.72 | 0.778 | T1-22-3 | 89.90 | 49.78 | 0.57 | 100 | 78.74 | 66.32 | 100 | 100 | 93.72 | 99.84 | 85.30 | 0.798 | T3-28-3 | 100 | 59.63 | 24.16 | 95.20 | 91.44 | 85.66 | 100 | 100 | 95.13 | 100 | 91.39 | 0.880 | T3-66-3 | 98.85 | 61.40 | 46.48 | 73.58 | 73.98 | 89.18 | 100 | 100 | 95.69 | 100 | 91.38 | 0.880 | 决策树 | T3-28-2 | 94.73 | 87.89 | — | — | 95.44 | 92.43 | 100 | 100 | 95.89 | 99.62 | 97.44 | 0.962 | T3-28-3 | 96.25 | 69.57 | 45.74 | 68.06 | 86.39 | 88.53 | 100 | 100 | 95.30 | 99.03 | 92.57 | 0.896 |
|
|
|