国土资源遥感, 2018, 30(4): 28-32 doi: 10.6046/gtzyyg.2018.04.05

基于微分变换的高光谱马尾松和杉木识别

徐念旭1,2,3, 田庆久,1,2, 申怀飞1,2, 徐凯健1,2

1. 南京大学国际地球系统科学研究所,南京 210023

2. 江苏省地理信息技术重点实验室,南京 210023

3. 江苏省地理信息资源开发与利用协同创新中心,南京 210023

Classification of Pinus massoniana and Cunninghamia lanceolata using hyperspectral image based on differential transformation

XU Nianxu1,2,3, TIAN Qingjiu,1,2, SHEN Huaifei1,2, XU Kaijian1,2

1. International Institute for Earth System Science, Nanjing University, Nanjing 210023, China

2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China

3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

通讯作者: 田庆久(1964-),男,教授,博士生导师,主要从事高光谱遥感和遥感信息定量化研究。Email:tianqj@nju.edu.cn

责任编辑: 陈理

收稿日期: 2017-06-15   修回日期: 2017-08-21   网络出版日期: 2018-12-15

基金资助: 国家重点研发计划项目“人工林资源监测关键技术研究”.  2017YFD0600903
国家科技重大专项项目“高分辨率对地观测系统”共同资助.  03-Y20A04-9001-15/16

Received: 2017-06-15   Revised: 2017-08-21   Online: 2018-12-15

作者简介 About authors

徐念旭(1992-),男,硕士研究生,主要从事高光谱遥感研究。Email:jsjhxnx@vip.qq.com。 。

摘要

高光谱遥感能分辨出地物间微小反射光谱差异信息,可用于解决林种遥感分类光谱识别的难题。利用Hyperion高光谱遥感影像,结合地面实测林种样地,对安徽省黄山市五城镇林区的马尾松和杉木进行识别。通过对Hyperion影像进行一阶、二阶微分变换,优化组合487~559 nm和681~742 nm光谱范围中反射差异明显的波段,再结合支持向量机(support vector machine,SVM)模型进行林种间分类识别。基于Hyperion影像像元反射率及其一阶和二阶微分光谱的分类识别总体精度分别达到76.50%,81.42%和88.52%,对应Kappa系数分别为0.528 4,0.625 7和0.769 1。结果表明,基于二阶微分变换的高光谱数据,通过SVM模型,可有效提高马尾松和杉木的识别精度,为高光谱遥感针叶林种分类识别提供了一种技术途径。

关键词: 高光谱 ; Hyperion ; 微分变换 ; 针叶林 ; 支持向量机

Abstract

Hyperspectral remote sensing can distinguish small spectrum differences between ground objects, and is expected to solve the classification problem of tree species. In this paper, by using Hyperion hyperspectral image, combined with the ground measured samples, classification of Pinus massoniana and Cunninghamia lanceolata in Wucheng of Huangshan City was conducted. With the 1st and 2nd differential transformation of the image, spectral band combination of 487~559 nm and 681~742 nm differs significantly, and hence was chosen to conduct supervised classification using support vector machine. Classification accuracy of raw, 1st and 2nd differential transformation image reaches 76.50%, 81.42% and 88.52% with Kappa coefficient being 0.528 4, 0.625 7 and 0.769 1 respectively. The results show that 2nd differential transformation and band selection of hyperspectral data can improve the classification accuracy of Pinus massoniana and Cunninghamia lanceolata, thus providing a foundation for further study of classification of coniferous forest with hyperspectral remote sensing.

Keywords: hyperspectral ; Hyperion ; differential transformation ; coniferous forest ; support vector machine

PDF (2483KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

徐念旭, 田庆久, 申怀飞, 徐凯健. 基于微分变换的高光谱马尾松和杉木识别. 国土资源遥感[J], 2018, 30(4): 28-32 doi:10.6046/gtzyyg.2018.04.05

XU Nianxu, TIAN Qingjiu, SHEN Huaifei, XU Kaijian. Classification of Pinus massoniana and Cunninghamia lanceolata using hyperspectral image based on differential transformation. REMOTE SENSING FOR LAND & RESOURCES[J], 2018, 30(4): 28-32 doi:10.6046/gtzyyg.2018.04.05

0 引言

高光谱遥感经过30多a的迅速发展,因其光谱分辨率高、波段数目多、图谱合一等特点,能为光谱性质相似的地物提供更精细的光谱信息,在地物识别方面具有独特的优势并被广泛应用,同时也为解决森林植被分类提供有效技术途径[1,2]。但是,高光谱遥感存在维度冗余问题,实际运用需要先进行光谱特征分析和波段优选等降维处理[3]。利用光谱微分变换,可以减弱大气吸收、散射和辐射影响,消除系统误差和土壤背景等噪声数据,筛选出差异更明显的波段组合,提高地物分类识别精度[4]

由于山区地形复杂,针叶林树冠叶片密杂,林下易产生阴影,往往造成林种间“同物异谱”和“异物同谱”现象严重,导致针叶林高光谱分类精度低,树种识别难[5,6,7]。尽管目前国内外植被类型及森林种群的高光谱分类识别做了大量工作,也取得一定的研究成果,但山地针叶林种间的高光谱识别方法研究进展缓慢,仍然是高光谱遥感识别难题之一[8,9]。支持向量机法(support vector machine,SVM)是与学习算法有关的监督学习模型,通过寻求模型复杂程度和识别新样本无误能力之间的最佳匹配,以获得最好的分类识别效果,在解决小样本、非线性及高维模式识别中表现出许多特有的优势,在高光谱树种识别方面表现出一定的潜力[10]

马尾松和杉木是国内重要经济树种和南方山区典型针叶林代表。以安徽黄山地区为研究区,基于美国EO-1卫星Hyperion高光谱遥感影像,结合地面林地实测样地数据,在对像元光谱进行一阶、二阶微分变换基础上,采用SVM模型对Hyperion高光谱影像进行马尾松和杉木林种的分类识别与提取,分析研究区马尾松和杉木的分布情况,旨在探索研究微分变换和SVM技术相结合的高光谱遥感针叶林种分类识别能力,评价分析分类识别效果和精度,为山地针叶林种高光谱遥感分类识别提供方法和技术途径。

1 Hyperion影像获取与处理

1.1 研究区与数据源

安徽黄山地区为多山区域,在研究中不可忽略山体阴影的分布。该区也是南方针叶林代表性林区,建有多个经济林培育基地[11]。五城镇位于黄山市屯溪区西南部,林地面积为1 334.35 km2,森林覆盖率达86.3%。研究区经纬度范围为N 29°29'~29°36',E 118°08'~118°15'。区内针叶林的优势树种为马尾松和杉木。

Hyperion获取可见光—近红外(400~1 000 nm)和短波红外(900~2 500 nm)的光谱数据,共计242个波段,其中可见光35个波段,近红外35个波段,短波红外172个波段。Hyperion数据的空间分辨率达30 m,光谱分辨率约为10 nm,幅宽为7.7 km[12]。本研究所用Hyperion高光谱数据获取时间为2015年5月22日,数据级别为L1R。

1.2 Hyperion影像预处理

Hyperion影像预处理过程包括: 未标定及受水汽影响严重波段剔除、坏线去除、条纹修复、Smile效应校正、大气校正和几何纠正等[13]。使用ENVI软件自带的FLAASH大气校正模块,消除大气中的分子及气溶胶等物质对于影像成像过程的影响,转化成地表反射率影像。利用Landsat8标准影像为基准数据,按均匀分布、“米”字型规律随机选取52个控制点,对大气校正后的数据进行几何纠正,使影像数据与基准影像具有相同的地理空间坐标,误差小于0.5个像元。

图1

图1   研究区Hyperion影像及部分实地观测针叶林样地

Fig.1   Hyperion image and ground measured samples in study area


2 光谱微分变换

植被反射光谱特征主要集中在400~1 000 nm波段范围,特征区域主要包括蓝边、黄边和红边,选取的特征参量主要包括微分值、红边位置、红边幅值以及相应的蓝边特征参量[14]

光谱一阶微分公式为

R(λi)'=R(λi+1)-R(λi)Δλ

式中: λi表示波长;R(λi)'表示λi处光谱一阶微分值;R(λi)表示λi处光谱反射率值; Δλ表示相邻2个波长间距。

一阶微分后的光谱曲线,可限制植被所受大气和土壤背景噪声的影响,从而进行特征参数的提取。通过光谱曲线斜率的变化,可以分析确定光谱曲线的变化区域,如红边位置。

光谱二阶微分公式为

R(λi)=R(λi+2)-2R(λi+1)+R(λi)(Δλ)2

式中 R(λi)表示λi处光谱二阶微分值

光谱二阶微分也是常用的光谱特征分析方法。使用二阶微分变换,即对一阶微分后的光谱再次求导,可以有效放大光谱的变化细节特征,提取光谱特征参数等。

对研究区整幅Hyperion影像分别进行一阶、二阶微分变换处理,根据实地观测点坐标,在预处理后影像对应像元内,对马尾松和杉木各选取多个纯净像元光谱(图2)。

图2

图2   马尾松与杉木典型像元反射率光谱曲线

Fig.2   Reflectance spectrum of Pinus massoniana and Cunninghamia lanceolate based on Hyperion pixel


图2显示,受大气和土壤背景等噪声影响,马尾松与杉木的反射率光谱曲线在700~900 nm波长范围种内出现不稳定的征态,种间的绝对区分度降低,易造成错误分类。计算一阶和二阶微分光谱(图3)。

图3

图3   马尾松与杉木典型像元一阶、二阶微分光谱曲线

Fig.3   1stand 2nddifferential transformation reflectance spectrum of Pinus massoniana and Cunninghamia lanceolate based on Hyperion pixel


图3(a)显示,反射率光谱曲线经过一阶微分变换后,在700~800 nm波长范围,种内稳定性增强,种间区分度提高,减弱了背景噪声的干扰,有利于提高分类精度; 图3(b)显示,反射率光谱曲线经过二阶微分变换后,在670~730 nm波长范围,种内稳定性继续增强,种间区分度继续提高,背景噪声干扰进一步减弱。

红边是绿色植物在670~760 nm之间反射率增高最快的点,也是一阶微分光谱在该区间内的拐点。不同树种的红边效应强度不同,可以由此选取相应波段的一阶微分光谱,进行分类识别。对于二阶微分光谱,可以通过相似性度量算法对变换结果进行距离计算,从而使不同树种间的差异量化。

波段组合应该遵循“种内变化幅度小、种间变化幅度大”的原则,选择种内稳定性高而种间差异明显的光谱波段,以保证分类精度达标。另外,短波红外波段数据获取成本高,800~1 000 nm波长范围反射率受树木冠层结构和光反射散射等因素影响大,光谱不稳定。综上考虑,本文分别选择反射率光谱曲线中742~851 nm范围的连续波段、一阶微分光谱曲线中498~548 nm和701~742 nm范围连续波段和二阶微分光谱曲线中487~559 nm和681~711 nm范围连续波段为研究波段。

3 森林树种分类与精度评价

3.1 监督分类

首先选择合适阈值进行掩模处理。提取出影像中马尾松和杉木等植被的分布情况,并且掩模去除道路、水系、裸土和人工建筑等不相关地物信息。

基于原始、一阶和二阶微分光谱影像和实地观测样地,选择马尾松和杉木光谱差异较明显的波段组合,采用SVM模型进行监督分类,对研究区马尾松和杉木的分布情况进行识别,结合验证样地计算分类精度及Kappa系数,比较高光谱反射率数据及其2种微分变换方式在针叶林识别中的优势。

对于实地观测样地,共采集了262个杉木纯净像元点数据和173个马尾松纯净像元点数据用于分类。另有89个杉木纯净像元点数据和94个马尾松纯净像元点数据用于精度检验。分类结果如图4所示。

图4

图4   基于Hyperion影像马尾松和杉木分类结果

Fig.4   Classification results of Pinus massoniana and Cunninghamia lanceolate based on Hyperion


3.2 精度评价

精度评价是利用混淆矩阵(表1)对分类结果与地面实测检验数据进行比较,以检验数据被正确分类的百分比,即分类精度。通常以总体分类精度和Kappa系数评价分类效果(表2)。

表1   原始反射率、一阶微分和二阶微分光谱精度统计

Tab.1  Accuracy statistics of raw reflectance,1st and 2nd differential transformation spectrum

类别杉木马尾松总计
原始反射率光谱杉木631780
马尾松2677103
总计8994183
一阶微分光谱杉木61667
马尾松2888116
总计8994183
二阶微分光谱杉木70272
马尾松1992111
总计8994183

新窗口打开| 下载CSV


表2   总体精度与Kappa系数统计

Tab.2  Statistical results of overall accuracy and Kappa coefficient

类别总体精度/%Kappa系数
原始反射率光谱76.502 70.528 4
一阶微分光谱81.420 80.625 7
二阶微分光谱88.524 60.769 1

新窗口打开| 下载CSV


4 结论与讨论

1)基于Hyperion高光谱影像,对反射率光谱进行一阶、二阶微分变换。选取差异明显的可见光波段组合,利用支持向量机模型进行监督分类,并检验结果精度。结果表明,原始反射率光谱、一阶和二阶微分光谱的总体精度分别达到76.50%,81.42%和88.52%,Kappa系数分别为0.528 4,0.625 7和0.769 1。研究表明经过微分变换后的光谱信息,大气干扰和土壤背景影响减弱,不同树种间的光谱差异被放大,更有利于识别区分马尾松和杉木,且二阶微分光谱的整体精度和Kappa系数都优于一阶微分光谱。

2)虽然利用光谱微分变换技术,可以减弱系统误差和大气、土壤等噪声影响,同时有效增强不同树种红边效应的差异,但无论外部影响或者内部差异,都局限于定性化表达,目前涉及定量化研究还较少。

3)本研究结果中得出二阶微分变换的分类总体精度和Kappa系数都优于一阶微分变换,然而是否存在微分指数的最优解,还需进一步探讨和研究。

参考文献

Ballanti L, Blesius L, Hines E , et al.

Tree species classification using hyperspectral imagery:A comparison of two classifiers

[J]. Remote Sensing. 2016,8(6):445.

DOI:10.3390/rs8060445      URL     [本文引用: 1]

The identification of tree species can provide a useful and efficient tool for forest managers for planning and monitoring purposes. Hyperspectral data provide sufficient spectral information to classify individual tree species. Two non-parametric classifiers, support vector machines (SVM) and random forest (RF), have resulted in high accuracies in previous classification studies. This research takes a comparative classification approach to examine the SVM and RF classifiers in the complex and heterogeneous forests of Muir Woods National Monument and Kent Creek Canyon in Marin County, California. The influence of object- or pixel-based training samples and segmentation size on the object-oriented classification is also explored. To reduce the data dimensionality, a minimum noise fraction transform was applied to the mosaicked hyperspectral image, resulting in the selection of 27 bands for the final classification. Each classifier was also assessed individually to identify any advantage related to an increase in training sample size or an increase in object segmentation size. All classifications resulted in overall accuracies above 90%. No difference was found between classifiers when using object-based training samples. SVM outperformed RF when additional training samples were used. An increase in training samples was also found to improve the individual performance of the SVM classifier.

George R, Padalia H ,

Kushwaha S P S.Forest tree species discrimination in western Himalaya using EO-1 Hyperion

[J]. International Journal of Applied Earth Observation and Geoinformation. 2014,28(1):140-149.

DOI:10.1016/j.jag.2013.11.011      URL     [本文引用: 1]

The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.

Asadzadeh S, Roberto D S F C .

A review on spectral processing methods for geological remote sensing

[J]. International Journal of Applied Earth Observation and Geoinformation. 2016,47:69-90.

DOI:10.1016/j.jag.2015.12.004      URL     [本文引用: 1]

In this work, many of the fundamental and advanced spectral processing methods available to geologic remote sensing are reviewed. A novel categorization scheme is proposed that groups the techniques into knowledge-based and data-driven approaches, according to the type and availability of reference data. The two categories are compared and their characteristics and geologic outcomes are contrasted. Using an oil-sand sample scanned through the sisuCHEMA hyperspectral imaging system as a case study, the effectiveness of selected processing techniques from each category is demonstrated. The techniques used to bridge between the spectral data and other geoscience products are then discussed. Subsequently, the hybridization of the two approaches is shown to yield some of the most robust processing techniques available to multi-, and hyperspectral remote sensing. Ultimately, current and future challenges that spectral analysis is expected to overcome and some potential trends are highlighted.

王志辉, 丁丽霞 .

基于叶片高光谱特性分析的树种识别

[J]. 光谱学与光谱分析, 2010,30(7):1825-1829.

URL     [本文引用: 1]

高光谱遥感技术的出现将为解决森林树种的精细识别难题提供有效的途径。 利用高光谱遥感技术进行树种鉴别时, 光谱特征的选择及提取是个非常重要的过程。 与多光谱数据相比, 高光谱数据具有波段多、 数据量大、 冗余度大等特点。 该文利用光谱微分法对原始光谱数据进行处理, 分析不同树种原始光谱、 光谱一阶微分和光谱二阶微分曲线图, 从中选择差异较大的波段用于鉴别不同树种。 最后利用欧氏距离对所选择的波段进行检验识别不同树种的效果, 检验的结果显示选择的波段能有效地区分不同树种。 区分不同树种的有效波段大都位于近红外波段, 并且差异最大的波段也是近红外波段, 其分别为1 657~1 666和1 868~1 877 nm。Characteristic Analysis

Wang Z H, Ding L X .

Tree species discrimination based on leaf-level hyperspectral characteristic analysis

[J]. Spectroscopy and Spectral Analysis. 2010,30(7):1825-1829.

[本文引用: 1]

Clark M L, Roberts D A, Clark D B .

Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales

[J]. Remote Sensing of Environment. 2005,96(3):375-398.

DOI:10.1016/j.rse.2005.03.009      URL     [本文引用: 1]

We investigated the utility of high spectral and spatial resolution imagery for the automated species-level classification of individual tree crowns (ITCs) in a tropical rain forest (TRF). Laboratory spectrometer and airborne reflectance spectra (161 bands, 437–2434 nm) were acquired from seven species of emergent trees. Analyses focused on leaf-, pixel- and crown-scale spectra. We first described the spectral regions and factors that most influence spectral separability among species. Next, spectral-based species classification was performed using linear discriminant analysis (LDA), maximum likelihood (ML) and spectral angle mapper (SAM) classifiers applied to combinations of bands from a stepwise-selection procedure. Optimal regions of the spectrum for species discrimination varied with scale. However, near-infrared (700–1327 nm) bands were consistently important regions across all scales. Bands in the visible region (437–700 nm) and shortwave infrared (1994–2435 nm) were more important at pixel and crown scales. Overall classification accuracy decreased from leaf scales measured in the laboratory to pixel and crown scales measured from the airborne sensor. Leaf-scale classification using LDA and 40 bands had 100% overall accuracy. Pixel-scale spectra from sunlit regions of crowns were classified with 88% overall accuracy using a ML classifier and 60 bands. The highest crown-scale (ITC) accuracy was 92% with LDA and 30 bands. Producer's accuracies ranged from 70% to 100% and User's accuracies ranged from 81% to 100%. The SAM classifier performed poorly at all scales and spectral regions of analysis. ITCs were also classified using an object-based approach in which crown species labels were assigned according to the majority class of classified pixels within a crown. An overall accuracy of 86% was achieved with an object-based LDA classifier applied to 30 bands of data. Object-based and crown-scale ITC classifications were significantly more accurate with 10 narrow-bands relative to accuracies achieved with simulated multispectral, broadband data. We concluded that high spectral and spatial resolution imagery acquired over TRF canopy has substantial potential for automated ITC species discrimination.

Peerbhay K Y, Mutanga O, Ismail R .

Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal,South Africa

[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2013,79(5):19-28.

DOI:10.1016/j.isprsjprs.2013.01.013      URL     [本文引用: 1]

Discriminating commercial tree species using hyperspectral remote sensing techniques is critical in monitoring the spatial distributions and compositions of commercial forests. However, issues related to data dimensionality and multicollinearity limit the successful application of the technology. The aim of this study was to examine the utility of the partial least squares discriminant analysis (PLS-DA) technique in accurately classifying six exotic commercial forest species (Eucalyptus grandis, Eucalyptus nitens, Eucalyptus smithii, Pinus patula, Pinus elliotii and Acacia mearnsii) using airborne AISA Eagle hyperspectral imagery (393–900nm). Additionally, the variable importance in the projection (VIP) method was used to identify subsets of bands that could successfully discriminate the forest species. Results indicated that the PLS-DA model that used all the AISA Eagle bands (n=230) produced an overall accuracy of 80.61% and a kappa value of 0.77, with user’s and producer’s accuracies ranging from 50% to 100%. In comparison, incorporating the optimal subset of VIP selected wavebands (n=78) in the PLS-DA model resulted in an improved overall accuracy of 88.78% and a kappa value of 0.87, with user’s and producer’s accuracies ranging from 70% to 100%. Bands located predominantly within the visible region of the electromagnetic spectrum (393–723nm) showed the most capability in terms of discriminating between the six commercial forest species. Overall, the research has demonstrated the potential of using PLS-DA for reducing the dimensionality of hyperspectral datasets as well as determining the optimal subset of bands to produce the highest classification accuracies.

Heinzel J, Koch B .

Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation

[J]. International Journal of Applied Earth Observation and Geoinformation. 2012,18(18):101-110.

DOI:10.1016/j.jag.2012.01.025      URL     [本文引用: 1]

Despite numerous studies existing for tree species classification the difficult situation in dense and mixed temperate forest is still a challenging task. This study attempts to extend the existing limitations by investigating comprehensive sets of different types of features derived from multiple data sources. These sets include features from full-waveform LiDAR, LiDAR height metrics, texture, hyperspectral data and colour infrared (CIR) images. Support vector machines (SVM) are used as an appropriate classifier to handle the high dimensional feature space and an internal ranking method allows the determination of the most important parameters. In addition, for species discrimination, focus is put on single tree applicable scale. While most experiences within these scales derive from boreal forests and are often restricted to two or three species, we concentrate on more complex temperate forests. The four main species pine (Pinus sylvestris), spruce (Picea abies), oak (Quercus petraea) and beech (Fagus sylvatica) are classified with an accuracy of 89.7%, 88.7%, 83.1% and 90.7%, respectively. Instead of directly classifying delineated single trees a raster cell based classification is conducted. This overcomes problems with erroneous polygons of merged tree crowns, which occur frequently within dense deciduous or mixed canopies. Lastly, we further test the possibility to correct these failures by combining species classification with single tree delineation.

Cho H, Lee K S .

Comparison between hyperspectral and multispectral images for the classification of coniferous species

[J]. Korean Journal of Remote Sensing. 2014,30(1):25-36.

DOI:10.7780/kjrs.2014.30.1.3      URL     [本文引用: 1]

臧卓, 林辉, 孙华 , .

南方主要针叶树种高光谱数据降维分类研究

[J] 中南林业科技大学学报, 2010,30(11):20-25.

DOI:10.3969/j.issn.1673-923X.2010.11.005      URL     [本文引用: 1]

采用ASD公司生产的FieldSpec HandHeldTM地物光谱仪,分别于2005、2006、2008年冬季跟踪观测杉木、马尾松、黑松、雪松等针叶树种的高光谱数据,经筛选后获取有效观测数据160条,其中120条作为训练集,40条作为测试集。将平滑去噪的一阶微分高光谱数据进行PCA方法和GA方法降维,然后利用BP神经网络和支持向量机(SVM)对降维后的测试集数据进行分类。结果表明:PCA—BP神经网络模型分类准确率95%,PCA—SVM分类准确率97.5%,GA和BP分类准确率92.5%,GA-SVM分类准确率100%。这说明两种降维方式结合支持向量机的分类均优于其与BP神经网络结合的分类,基于GA的降维方法对高光谱波段的选择更有效率,具有较好的应用前景。

Zang Z, Lin H, Sun H , et al.

Study on hyper-spectral dimension reduction and classification for main southern coniferous species

[J]. Journal of Central South University of Forestry and Technology, 2010,30(11):20-25.

[本文引用: 1]

Plaza A, Benediktsson J A, Boardman J W , et al.

Recent advances in techniques for hyperspectral image processing

[J]. Remote Sensing of Environment. 2009,113(1):S110-S122.

DOI:10.1016/j.rse.2007.07.028      URL     [本文引用: 1]

Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms.

丁晖, 方炎明, 杨新虎 , .

黄山亚热带常绿阔叶林的群落特征

[J]. 生物多样性, 2016,24(8):875-887.

DOI:10.17520/biods.2016108      URL     [本文引用: 1]

黄山是我国东部高山之一,处于亚热带季风气候区,属南北植物区系交替的过渡带,是第四纪冰期动植物的避难所。其地带性植被为常绿阔叶林,植被垂直分布明显,是中国生物多样性保护优先区域,也是世界文化与自然遗产地以及享誉全球的风景名胜区。2014年,我们在黄山建立了10.24 ha的森林动态监测样地,并完成了首次调查。本文从物种组成、区系特征、径级结构和空间分布格局等方面分析了样地中植物的群落特征。结果表明:样地内有维管植物59科129属191种,其中乔木层内胸径≥1 cm的木本植物46科97属153种;热带性质的科、属分别占总科、属数的65.79%和45.36%,温带性质的科、属分别占34.21%和51.55%。样地内珍稀濒危物种较多,其中国家Ⅱ级重点保护野生植物6种、《中国生物多样性红色名录——高等植物卷》中的近危物种7种、《濒危野生动植物种国际贸易公约》(CITES)附录Ⅱ物种1种以及64种中国特有种,这些物种具有较高的保护和研究价值。当取样面积小于2,150 m~2时,物种数随着面积的增加而急剧增加;其后增加速率明显降低;但大于57,950 m~2时,增加速率又略变大。稀有种69种,占总树种数的45.10%。壳斗科和杜鹃花科的重要值占一半以上。建群种甜槠(Castanopsis eyrei)的重要值达26.25%,其次分别为细齿叶柃(Eurya nitida)(7.63%)、马银花(Rhododendron ovatum)(7.60%)、马尾松(Pinus massoniana)(6.29%)和檵木(Loropetalum chinense)(4.83%)。样地平均胸径为4.10 cm,小径木的数量占较大优势。乔木层可分为两个亚层,甜槠在两个亚层的个体数量均最多,马尾松数量也比较多。甜槠、细齿叶柃、马银花、马尾松等均呈较显著的聚集分布。

Ding H, Fang Y M, Yang X H , et al.

Community characteristics of a subtropical evergreen broad-leaved forest in Huangshan,Anhui Province,East China

[J]. Biodiversity Science. 2016,24(8):875-887.

[本文引用: 1]

Puletti N, Camarretta N, Corona P .

Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests

[J]. European Journal of Remote Sensing. 2016,49(1):157-169.

DOI:10.5721/EuJRS20164909      URL     [本文引用: 1]

Abstract The objective of the present study is the comparison of the combined use of Earth Observation-1 (EO-1) Hyperion Hyperspectral images with the Random Forest (RF), Support Vector Machines (SVM) and Multivariate Adaptive Regression Splines (MARS) classifiers for discriminating forest cover groups, namely broadleaved and coniferous forests. Statistics derived from classification confusion matrix were used to assess the accuracy of the derived thematic maps. We demonstrated that Hyperion data can be effectively used to obtain rapid and accurate large-scale mapping of main forest types (conifers-broadleaved). We also verified higher capability of Hyperion imagery with respect to Landsat data to such an end. Results demonstrate the ability of the three tested classification methods, with small improvements given by SVM in terms of overall accuracy and kappa statistic.

Scheffler D, Karrasch P.

Preprocessing of hyperspectral images:A comparative study of destriping algorithms for EO1-Hyperion

[C]//Proceedings of the International Society for Optical Engineering. 2013,8892(6):1504-1507.

[本文引用: 1]

Kuusk A, Lang M, Nilson T .

Simulation of the reflectance of ground vegetation in sub-boreal forests

[J]. Agricultural and Forest Meteorology. 2004,126(1):33-46.

DOI:10.1016/j.agrformet.2004.05.004      URL     [本文引用: 1]

To study the reflectance spectra of ground vegetation in forests a series of field measurements was performed by a GER-2600 spectrometer in Estonian and Swedish sub-boreal forests. The measured reflectance spectra of grasses, regenerating trees, mosses and dwarf shrubs were analysed with a two-layer model of vegetation canopy reflectance. By the inversion of the two-layer model a set of model parameters was estimated for several types of understorey vegetation. The estimated sets of understorey parameters can be used to reproduce the spectral signatures of the respective types of ground vegetation which are needed in simulating the reflectance spectra of sub-boreal and boreal forests. Principal component analysis showed that at least six biochemical components are needed to reproduce the spectral signatures of understorey vegetation in the spectral range of 400-2400 nm. Some vegetation indices (VI) which are in use in remote sensing are rather well correlated with canopy parameters estimated in the inversion. At the same time several VIs have very low sensitivity and/or almost random behavior.

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发