高光谱与LiDAR数据融合研究——以黑河中游张掖绿洲农业区精细作物分类为例
|
杨思睿, 薛朝辉, 张玲, 苏红军, 周绍光
|
Fusion of hyperspectral and LiDAR data: A case study for refined crop classification in agricultural region of Zhangye Oasis in the middle reaches of Heihe River
|
Sirui YANG, Zhaohui XUE, Ling ZHANG, Hongjun SU, Shaoguang ZHOU
|
|
表1 基于2种形式的SMLR对不同单一特征EMAP和EAP分类的精度与Kappa系数
|
Tab.1 Classification accuracy and Kappa coefficient for different single features (EMAP,EAP) based on SMLR in two forms(%)
|
|
序号 | 类别 | linear | RBF-MRF | Xh | EMAP(Xh) | EAP(XL) | Xh | EMAP(Xh) | EAP(XL) | 1 | 玉米 | 87.20 | 87.28 | 54.16 | 94.59 | 86.40 | 70.53 | 2 | 韭菜 | 88.92 | 92.13 | 65.51 | 96.54 | 98.10 | 87.96 | 3 | 菜花 | 84.78 | 93.10 | 79.33 | 85.29 | 94.47 | 91.35 | 4 | 菜椒 | 87.02 | 84.75 | 79.48 | 95.02 | 97.14 | 74.17 | 5 | 土豆 | 94.09 | 84.53 | 53.07 | 97.70 | 88.08 | 42.57 | 6 | 冬笋 | 96.93 | 95.86 | 90.75 | 98.47 | 98.98 | 83.14 | 7 | 西瓜 | 81.92 | 87.55 | 72.83 | 95.45 | 80.50 | 66.68 | 8 | 建设用地 | 77.47 | 75.42 | 31.26 | 97.87 | 97.53 | 53.85 | OA | 84.41 | 83.96 | 53.09 | 95.08 | 91.70 | 66.70 | AA | 87.29 | 87.58 | 65.80 | 95.12 | 92.65 | 71.28 | Kappa | 78.82 | 78.24 | 41.45 | 93.10 | 88.59 | 56.37 |
|
|
|