高光谱与LiDAR数据融合研究——以黑河中游张掖绿洲农业区精细作物分类为例
|
杨思睿, 薛朝辉, 张玲, 苏红军, 周绍光
|
Fusion of hyperspectral and LiDAR data: A case study for refined crop classification in agricultural region of Zhangye Oasis in the middle reaches of Heihe River
|
Sirui YANG, Zhaohui XUE, Ling ZHANG, Hongjun SU, Shaoguang ZHOU
|
|
表2 基于2种形式的SMLR对多源特征组合(EMAP和EAP)分类的精度与Kappa系数
|
Tab.2 Classification accuracy and Kappa coefficient for multi features combination (EMAP,EAP) based on SMLR in two forms(%)
|
|
序号 | 类别 | linear | RBF-MRF | Xh+ EMAP(Xh) | Xh+ EAP(XL) | EAP(XL)+ EMAP(Xh) | Xh+EAP(XL)+ EMAP(Xh) | Xh+ EMAP(Xh) | Xh+ EAP(XL) | EAP(XL)+ EMAP(Xh) | Xh+EAP(XL)+ EMAP(Xh) | 1 | 玉米 | 91.71 | 89.31 | 87.97 | 90.91 | 91.79 | 90.31 | 90.99 | 91.27 | 2 | 韭菜 | 95.21 | 92.26 | 91.37 | 94.69 | 96.54 | 91.64 | 86.96 | 92.42 | 3 | 菜花 | 90.00 | 87.39 | 94.99 | 94.85 | 94.86 | 91.59 | 95.45 | 93.82 | 4 | 菜椒 | 93.36 | 89.64 | 89.32 | 93.20 | 96.17 | 92.59 | 96.64 | 94.76 | 5 | 土豆 | 95.43 | 95.21 | 87.09 | 93.94 | 96.89 | 94.92 | 95.38 | 97.56 | 6 | 冬笋 | 98.31 | 98.49 | 95.25 | 98.29 | 97.83 | 98.98 | 98.98 | 99.11 | 7 | 西瓜 | 86.05 | 93.51 | 94.64 | 92.22 | 97.08 | 92.18 | 95.40 | 97.38 | 8 | 建设用地 | 86.49 | 82.81 | 78.16 | 83.40 | 97.19 | 98.31 | 96.31 | 98.68 | OA | 90.36 | 87.72 | 85.98 | 89.53 | 94.53 | 93.33 | 93.85 | 94.50 | AA | 92.07 | 91.08 | 89.85 | 92.69 | 96.04 | 93.81 | 94.51 | 95.62 | Kappa | 86.65 | 83.17 | 80.80 | 85.58 | 92.39 | 90.72 | 91.45 | 92.35 |
|
|
|