基于Fisher准则和TrAdaboost的高光谱相似样本分类算法
|
刘万军, 李天慧, 曲海成
|
Hyperspectral similar sample classification algorithm based on Fisher criterion and TrAdaboost
|
Wanjun LIU, Tianhui LI, Haicheng QU
|
|
表3 算法间的分类精度对比
|
Tab.3 Accuracy compare of each algorithm(%)
|
|
目标样 本类别 | 辅助样 本类别 | SVM | TrAdaboost | H_TrAdaboost | C1 vs C2 | C6 vs C5 | 54.50 | 55.50 | 59.00 | C1 vs C2 | C5 vs C6 | 63.50 | 67.00 | 69.50 | C1 vs C5 | C2 vs C6 | 73.50 | 74.50 | 77.50 | C1 vs C5 | C2 vs C7 | 71.00 | 68.50 | 76.00 | C1 vs C6 | C2 vs C7 | 65.50 | 67.00 | 71.00 | C1 vs C6 | C7 vs C2 | 70.50 | 72.50 | 73.00 | C2 vs C5 | C1 vs C6 | 71.00 | 74.50 | 75.50 | C2 vs C8 | C1 vs C4 | 98.50 | 99.50 | 99.50 | C2 vs C8 | C1 vs C5 | 94.00 | 97.00 | 97.50 |
|
|
|