基于Fisher准则和TrAdaboost的高光谱相似样本分类算法
|
|
刘万军, 李天慧, 曲海成
|
Hyperspectral similar sample classification algorithm based on Fisher criterion and TrAdaboost
|
|
Wanjun LIU, Tianhui LI, Haicheng QU
|
|
表5 样本1上算法间的分类精度对比
|
Tab.5 Accuracy compare of each algorithm in sample 1
|
|
| 算法 | 统计值 | 15% | 10% | 5% | 3% | 2% | 1% | | SVM | OA/% | 71.00 | 71.00 | 69.00 | 65.50 | 63.50 | 63.50 | | Kappa | 0.70 | 0.71 | 0.67 | 0.64 | 0.63 | 0.62 | | TrAdaboost | OA/% | 77.50 | 76.00 | 71.00 | 69.50 | 68.50 | 67.00 | | Kappa | 0.77 | 0.73 | 0.71 | 0.68 | 0.68 | 0.65 | | H_TrAdaboost | OA/% | 79.50 | 77.50 | 73.50 | 72.00 | 70.50 | 69.50 | | Kappa | 0.79 | 0.77 | 0.73 | 0.72 | 0.70 | 0.69 |
|
|
|