国土资源遥感, 2018, 30(4): 68-73 doi: 10.6046/gtzyyg.2018.04.11

一种遥感影像自动识别耕地类型的机器学习算法

周询1,2, 王跃宾3, 刘素红,1,2, 于佩鑫1,2, 王西凯1,2

1. 北京师范大学地理学院,北京 100875

2. 北京师范大学地理科学学部,北京 100875

3. 北京师范大学数学科学学院,北京 100875

A machine learning algorithm for automatic identification of cultivated land in remote sensing images

ZHOU Xun1,2, WANG Yuebin3, LIU Suhong,1,2, YU Peixin1,2, WANG Xikai1,2

1. School of Geography, Beijing Normal University, Beijing 100875, China

2. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

通讯作者: 刘素红(1967-),女,博士,教授,博士生导师,主要从事植被遥感和遥感图像解译方面的研究。Email:liush@bnu.edu.cn

责任编辑: 张仙

收稿日期: 2017-04-6   修回日期: 2017-07-12   网络出版日期: 2018-12-15

基金资助: 国家自然科学基金项目“典型植被群落结构和光谱参数季节变化的多尺度实验研究”.  41171262
水利部公益行业科研专项经费项目“典型黑土区坡耕地土壤侵蚀危害程度研究”共同资助.  201501012

Received: 2017-04-6   Revised: 2017-07-12   Online: 2018-12-15

作者简介 About authors

周询(1990-),男,博士研究生,主要从事植被遥感和影像分类方面的研究。Email:ynzx125@qq.com。 。

摘要

耕地作为重要的土地资源,关系着国家的粮食安全问题,因此迫切需求快速准确获取耕地信息的方法。传统的遥感影像监督分类方法以训练样本和待分类像元/图斑的光谱特征或纹理特征的一致性作为分类依据,这对训练样本的依赖性较强。对此提出了一种基于影像窗口子区的耕地类型自动识别算法,通过提取一定大小影像窗口子区的多光谱和多层次特征,利用机器学习算法,实现影像窗口子区耕地和非耕地类型的自动判别。依据该算法,可以通过建立某个区域内遥感影像耕地类型的特征库,实现对影像窗口子区类别的非监督自动判别,提高目前分类算法的自动化程度。以东北地区高空间分辨率遥感影像为例进行实验,精度达到了90.8%。该算法为耕地信息自动化快速获取提供了技术支持,也可用于遥感影像中某一种纯净地物类型的快速提取。

关键词: 影像窗口子区 ; 特征库 ; 机器学习 ; 耕地自动识别

Abstract

As an important kind of land resources, cultivated land is related to the country’s food security. So it is very significant to have a fast and accurate method for obtaining information of cultivated land. The traditional supervised classification methods of remote sensing image are based on the consistency of the spectral features or texture features between the training samples and the pixels/patches to be classified. These methods have strong dependence on training samples. This paper proposes an automatic classification algorithm of cultivated land based on the image window subarea. By using the machine learning algorithm, the automatic classification of cultivated land or non-cultivated land in the sub region of the image window can be realized by extracting the multi-spectral and multi-level features. Using this method, the unsupervised automatic classification of the type of the image window subarea is realized by establishing the feature database of the remote sensing image of the cultivated land in a certain area. With the high spatial resolution remote sensing image of Northeast China as an example, the experimental results show that the accuracy of the automatic classification algorithm is 90.8%. Being able to automatically acquire the cultivated land information, this method can also be used to extract any pure ground object from remote sensing images.

Keywords: image window subarea ; feature database ; machine learning ; automatic identification of cultivated land

PDF (4329KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周询, 王跃宾, 刘素红, 于佩鑫, 王西凯. 一种遥感影像自动识别耕地类型的机器学习算法. 国土资源遥感[J], 2018, 30(4): 68-73 doi:10.6046/gtzyyg.2018.04.11

ZHOU Xun, WANG Yuebin, LIU Suhong, YU Peixin, WANG Xikai. A machine learning algorithm for automatic identification of cultivated land in remote sensing images. REMOTE SENSING FOR LAND & RESOURCES[J], 2018, 30(4): 68-73 doi:10.6046/gtzyyg.2018.04.11

0 引言

耕地作为重要的土地利用/土地覆盖类型,其数量、质量和空间分布范围关系着人类社会和经济的发展,关乎国家粮食安全问题,且与生态环境保护紧密相连[1,2]。高效获取耕地信息,是土地利用/土地覆盖研究领域的热点之一。

遥感技术为提取耕地类型提供了更加快速、全面、准确的手段,其中基于像元和面向对象的监督分类方法较为常用[3,4]。基于像元的分类方法中,需要从影像中选择特定的训练样本,获得样本的光谱特征,建立每个类别的判定函数[5],然后利用判定函数对待分类数据进行类别判定[6]。面向对象的分类方法首先对遥感影像进行分割[7],将分割后的斑块作为研究对象[8],然后选择特定的斑块作为训练样本,获取其光谱和几何等特征,建立不同类别的判定函数,对待分类斑块进行分类[9]

由于遥感影像的光谱特征受观测几何条件和地表类型变化的影响比较大,所以“同物异谱”现象较为严重[10],这导致在利用光谱特征进行地物类别判断时受条件限制较强。此外,进行监督分类时选择的训练样本用于同一幅影像分类时精度较高[11],但处理其他多幅影像时精度显著降低; 而针对不同影像重新选择训练样本则效率较低[12]。在高空间分辨率遥感影像中,分类方法的精度与效率的矛盾更加突出,自动化程度需求更强[13]

为了兼顾遥感影像分类方法的精度与效率,本文提出了一种基于影像窗口子区的耕地类型自动识别算法。该算法通过对影像的规则划分获取一定大小的影像窗口子区,在提取多光谱和多层次特征的基础上,利用机器学习算法,自动识别影像窗口子区耕地和非耕地类型。以东北地区的高空间分辨率遥感影像为例,建立实验数据集以构建该区域特征库,实现耕地和非耕地类型的非监督自动识别,大大提高了分类算法的自动化程度; 同时也对影像窗口子区尺度和样本容量进行了探讨。

1 算法原理及流程

结合高空间分辨率遥感数据特点,本文提出的基于影像窗口子区的耕地类型自动识别算法分为3个步骤: 首先,通过获取一定数量典型地类的纯净窗口子区构建实验数据集; 然后,对实验数据集进行多光谱、多层次特征提取,建立不同地类的特征库; 最后,采用机器学习分类算法实现各地类的自动识别。

1.1 实验数据集构建

高空间分辨率遥感影像数据中,典型地物类型会在一定的窗口尺度内保持良好的均一性,这样尺度的窗口称为纯净窗口子区,该尺度可作为该类型的空间展布尺度[14],可用一定数量影像窗口子区中纯净窗口子区所占比例表示该尺度下地物的纯净度。依照耕地类型的空间展布尺度,通过随机对遥感影像的规则切分,获取一定数量的影像窗口子区,构建实验数据集,作为样本集。

构建的实验数据集包括3个方面的属性: 典型地物类型、样本容量和各类型所占比例。典型地物类型由研究区典型地物构成决定; 样本容量大小影响分类算法的效率和精度[15]; 各类型所占比例反映地类的结构,按照土地利用/土地覆盖各类型面积比确定[16]

1.2 特征库建立

构建了实验数据集之后,将对其影像窗口子区进行多光谱、多层次特征提取以建立特征库,作为对影像进行识别分类的依据。

多光谱特征是针对遥感影像多波段数据特点,按照波段数将遥感影像拆分为多个灰度图像,将多波段多图像的光谱特征作为特征库建立的基础。

多层次特征是由对影像的初级特征到高级特征的抽象所得[17,18],包括尺度不变特征变换(scale-invariant feature transform,SIFT)、稀疏编码和最大化池化。SIFT是对影像特征的初级提取,反映了影像的关键点和局部特征[19]。在其基础上,进行稀疏编码表示,获得更高层次的特征[20]。其求解过程包括训练阶段和编码阶段: 训练阶段是对训练数据图像的SIFT特征进行稀疏编码,同时求解稀疏编码约束函数中的稀疏编码表示和字典; 编码阶段是利用学习得到的最优字典,对测试数据图像的SIFT特征进行稀疏编码,求解其稀疏编码表示。得到稀疏编码表示后,通常需要对其进行最大化池化,将向量中各维相应的最大分量组成一个特征向量来表示该影像,获得多层次特征。

1.3 地类识别

针对不同地类的特征,利用支持向量机(support vector machine, SVM)算法对不同地类进行训练,构建类别判别函数[21]。首先,对待分类影像进行与特征库相同的特征提取,再利用判别函数进行地类识别; 然后将影像识别结果进行融合,统计同一个影像窗口子区的所有灰度图像类别,将其众数作为该窗口子区的地物类型,实现耕地类型与非耕地类型的自动识别。基于影像窗口子区的耕地类型自动识别算法的具体流程如图1所示。

图1

图1   耕地自动化识别流程

Fig.1   Flow chart of automatic identification of cultivated land


2 数据源与实验结果

实验数据源选择0.4 m空间分辨率的Pleiades卫星遥感数据,共4个波段,分别为蓝光波段B1、绿光波段B2、红光波段B3和近红外波段B4。

研究区位于我国东北地区的望奎县、大庆市、梅河口市和嫩江县4个典型区,分别位于东北地区的不同方位,典型地物类型主要包括耕地、林地、居民地和水体等,基本反映了东北地区的主要地物类型。研究区位置分布及遥感影像如图2图3所示。其中嫩江县有3个时相数据。

图2

图2   地物类型及研究区位置

Fig.2   Land types and the location of study areas


图3

图3   研究区遥感影像
(Pleiades B3(R),B2(G),B1(B)合成)

Fig.3   Remote sensing images in study areas


图2图3所示,在研究区内,包含了成片的耕地和非耕地区域,其中非耕地类型主要是林地和居民地。因此本文提出的算法主要以识别耕地、林地和居民地为主要目标。

2.1 地物类型和样本选取结果

由土地利用/土地覆盖数据,得到研究区内耕地、林地和居民地类型所占面积比例分别约为65%,35%和5%,以此作为样本选取的依据。

为获取纯净窗口子区大小,通过统计窗口子区尺度与纯净度的关系曲线,获得不同尺度下地物的纯净度。本文随机选择256像元 ×256像元,384像元 ×384像元,512像元 ×512像元,640像元 ×640像元和768像元 ×768像元的影像窗口子区各150景,目视判别其是否为纯净窗口子区,并分别计算纯净度,统计结果曲线如图4所示,图中红色点为实验最终选取的纯净窗口子区尺度,蓝色点为未选取的其他纯净窗口子区尺度。

图4

图4   不同尺度纯净度统计

Fig.4   Statistical chart of purity at different scales


图4可以看出,随着影像窗口子区尺度不断增大,地物纯净度不断降低。在保证影像窗口子区纯净度的前提下,考虑算法模型的效率问题,则影像窗口子区大小选取512像元 ×512像元,纯净度为85.3%,对应实际地面尺寸为200 m ×200 m,基本符合东北地区耕地类型的空间展布尺度。依据该影像窗口子区尺度,通过对高空间分辨率影像的随机切分,构建实验数据集,各地物类型影像窗口子区如表1所示。

Tab.1   Image window subareas of each type

地物类型影像窗口子区
耕地
林地
居民地

新窗口打开| 下载CSV


2.2 样本容量选取结果

为了获取训练/验证数据集样本容量大小,本文从实验数据集中选取容量大小分别为572,385,291,197,143和100的样本,测试数据集样本总容量保持883不变。各类型样本数依据土地利用/土地覆盖面积百分比选取,训练/验证数据集样本容量统计如表2所示。以不同训练/验证数据集样本容量,按照本文提出的自动识别算法进行对比实验,获得各方案分类精度,统计结果如图5所示。

Tab.2   Sample size of each type(个)

数据集耕地林地居民地合计
训练/验证数据集A40015022572
训练/验证数据集B27010015385
训练/验证数据集C2008011291
训练/验证数据集D140507197
训练/验证数据集E100385143
训练/验证数据集F68284100
测试数据集60025033883

新窗口打开| 下载CSV


图5

图5   样本容量与分类精度关系

Fig.5   Relationship between sample size and classification accuracy


本文主要研究对象为耕地类型,因此将林地和居民地进行合并,作为非耕地类型。从图5中可以看出,随着训练/验证数据集样本容量的增加,居民地分类精度大幅上升,林地和非耕地分类精度有一定幅度的提高,耕地分类精度也有上升趋势。为保障各类型识别精度要求,训练/验证数据集样本容量选择为572,耕地分类精度为97.0%,林地分类精度为81.6%,居民地分类精度为63.6%,非耕地分类精度为79.5%,总体精度为90.8%。

2.3 不同特征库条件下的自动识别精度

在确定了影像窗口子区尺度和样本容量后,选择了2套不同特征库的构建方案进行对比实验,分别对多光谱数据的多波段多图像以及合成单图像进行特征提取构建特征库,并对构建的特征库进行了多次精度验证。各方案模型在验证阶段的分类精度均值和方差如表3所示。

表3   各方案模型分类精度均值和方差

Tab.3  Mean and variance of classification accuracy of each model

图像类型均值方差
多波段多图像0.8400.031
合成单图像0.7500.043

新窗口打开| 下载CSV


表3可以看出,选择多波段多图像的自动识别方法精度较高,在验证阶段达到84.0%,远高于合成单图像的自动识别方法。

2.4 基于特征库的耕地类型识别精度

利用训练所得模型,对测试数据集进行识别分类,并将类型识别结果与已知标签对比获取其分类精度。各方案模型在测试阶段的不同地物类型识别精度如表4所示。

表4   各方案模型识别精度

Tab.4  Classification accuracy of each model

图像类型耕地非耕地总体
多波段多图像0.9620.7950.908
合成单图像0.9500.7030.871

新窗口打开| 下载CSV


表3可见,多波段多图像的自动识别方法总体精度较高,在测试阶段达到了90.8%,具有较为理想的自动识别效果。利用该方法,以构建某一区域特征库为基础,实现对耕地类型的非监督分类,大大增强了分类方法的自动化程度。

3 结论与讨论

本文提出了一种遥感影像自动识别耕地类型的机器学习算法,基于对影像的规则切分获取一定大小的影像窗口子区,通过提取其多光谱和多层次特征,利用机器学习算法,实现耕地和非耕地类型的自动判别。通过研究,得到了以下结论:

1)与传统基于像元和面向对象分析方法相比,本文算法仅以规则切分后的影像纯净窗口子区作为研究对象进行识别,无需对单一像元进行分析处理,也避免了对高空间分辨率影像进行复杂的分割操作。研究表明,窗口子区尺度和样本容量的选择是决定分类精度与效率的主要参量,即窗口子区尺度选择的纯净度和样本容量选择的代表性是分类精度的关键,为了兼顾工作效率,应选择满足纯净度要求的最大窗口子区尺度和满足分类精度要求的最小样本容量。本文中研究区典型地物纯净窗口子区的尺度选择为200 m ×200 m,纯净度可达85.3%,是较为合理的影像窗口子区可识别尺度; 随机获取该尺度下的影像窗口子区,训练/验证数据集样本容量选择572,测试数据集样本容量为883,是兼顾精度与效率的较好选择。

2)通过对图像提取多光谱和多层次特征信息,构建特征库,利用机器学习算法,实现了对高空间分辨率遥感影像任意窗口子区耕地类型的自动识别,精度达到了90.8%。通过不同特征库条件下的对比实验发现,训练过程中所采用的策略会对分类精度产生影响,在只利用合成单图像进行多层次特征提取与识别分类时,精度下降到了87.1%。可见基于多光谱和多层次特征的地类识别机器学习算法可充分利用多光谱数据特征,提高分类模型的性能。

3)通过特征库的构建,使遥感影像分类过程中主要关注纯净窗口子区的规则切分以获取样本对象,同时本文算法所选取的训练样本并不局限于同一景影像中,因此适用于某一区域内大量遥感数据的自动化分类处理。在得到影像块数据集后进行特征提取,即可利用特征库进行地物类别自动识别,简化了分类阶段的训练过程,实现非监督的耕地识别,提高了分类算法的自动化程度,同时也可以用于从遥感影像中某一种纯净地物类型的快速提取。

本文研究也发现了一些不足之处,如识别的精度受到训练样本代表性及纯净度的限制。若训练样本中耕地和非耕地的混合样本数超过15%,不满足窗口子区纯净度要求时,会导致获取特征的不稳定,从而对分类精度有一定影响。因此,在训练阶段需要采用一定训练样本的选取策略才能保证分类结果的精度。今后的研究工作将着重探讨纯净窗口子区的自动获取与快速高效的自动分类研究。

参考文献

曹鑫, 陈学泓, 张委伟 , .

全球30 m空间分辨率耕地遥感制图研究

[J]. 中国科学(地球科学), 2016,46(11):1426-1435.

[本文引用: 1]

Cao X, Chen X H, Zhang W W , et al.

Research on global 30 m spatial resolution remote sensing mapping of cultivated land

[J]. Scientia Sinica(Terrae), 2016,46(11):1426-1435.

[本文引用: 1]

满卫东, 王宗明, 刘明月 , .

1990—2013年东北地区耕地时空变化遥感分析

[J]. 农业工程学报, 2016,34(7):1-10.

DOI:10.11975/j.issn.1002-6819.2016.07.001      URL     [本文引用: 1]

为揭示1990-2013年东北地区耕地变化规律,以Landsat TM/ETM+/OLI遥感影像为数据源,采用面向对象与目视解译相结合的分类方法,提取东北地区1990年、2000年和2013年耕地信息,辅以气候、地形、社会经济等数据,分析耕地时空变化特征及其驱动因素。结果表明:面向对象分类与目视解译相结合的方法能够快速、准确地完成耕地空间分布信息提取,总体分类精度达93%以上;2013年东北地区现有耕地4.17×105 km2,占东北地区土地总面积的33.51%,其中旱田比例为86.24%;1990-2013年耕地总量增加,2000-2013年比1990-2000年耕地增加速度减小,空间上,耕地呈现南减北增的趋势,新增耕地重心逐渐北移,建设用地侵占耕地速度加快,以省会城市为中心,向东北部蔓延;对湿地、林地、草地开垦减弱,对裸地和海面的农业开发增强,退耕还湿、还草、还林效果明显,耕地变化活跃区处于年降水量在500~700 mm、年均气温在2~4℃、坡度小于3°、高程小于200 m的地理环境中;旱田改为水田规模扩大,旱田质心变化不显著,水田质心向东北移207.41 km。23 a间,虽然气候变化对东北地区耕地变化有一定影响,但政策调控、经济发展、科技进步、人口增长、城市扩张等人文因素仍然是耕地变化和时空分异特征的主要驱动因素。农业发展转型、提高单位面积产量和劳动生产效率,将是未来东北地区耕地发展的必由之路。

Man W D, Wang Z M, Liu M Y , et al.

Spatio-temporal dynamics analysis of cropland in Northeast China during 1990—2013 based on remote sensing

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,34(7):1-10.

[本文引用: 1]

Shackelford A K, Davis C H .

A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(10):2354-2363.

DOI:10.1109/TGRS.2003.815972      URL     [本文引用: 1]

In this paper, we present an object-based approach for urban land cover classification from high-resolution multispectral image data that builds upon a pixel-based fuzzy classification approach. This combined pixel/object approach is demonstrated using pan-sharpened multispectral IKONOS imagery from dense urban areas. The fuzzy pixel-based classifier utilizes both spectral and spatial information to discriminate between spectrally similar road and building urban land cover classes. After the pixel-based classification, a technique that utilizes both spectral and spatial heterogeneity is used to segment the image to facilitate further object-based classification. An object-based fuzzy logic classifier is then implemented to improve upon the pixel-based classification by identifying one additional class in dense urban areas: nonroad, nonbuilding impervious surface. With the fuzzy pixel-based classification as input, the object-based classifier then uses shape, spectral, and neighborhood features to determine the final classification of the segmented image. Using these techniques, the object-based classifier is able to identify buildings, impervious surface, and roads in dense urban areas with 76%, 81%, and 99% classification accuracies, respectively.

靳欢欢 .

基于逐像元和面向对象分类方法的分析研究

[J].江苏科技信息, 2014(19):38-40.

[本文引用: 1]

Jin H H .

Analysis and research on the the pixel-based and object oriented classification

[J].Jiangsu Science and Technology Information,2014(19):38-40.

[本文引用: 1]

蔡银桥, 毛政元 .

基于多特征对象的高分辨率遥感影像分类方法及其应用

[J]. 国土资源遥感, 2007,19(1):77-81.doi: 10.6046/gtzyyg.2007.01.17.

[本文引用: 1]

Cai Y Q, Mao Z Y .

A method for classification of high resolution remotely sensed images based on multi-feature objects and its application

[J]. Remote Sensing for Land and Resources, 2007,19(1):77-81.doi: 10.6046/gtzyyg.2007.01.17.

[本文引用: 1]

朱述龙, 张占睦 . 遥感图像获取与分析[M]. 北京: 科学出版社, 2000.

[本文引用: 1]

Zhu S L, Zhang Z M. Remote Sensing Image Acquisition and Analysis[M]. Beijing: Science Press, 2000.

[本文引用: 1]

别强, 何磊, 赵传燕 .

基于影像融合和面向对象技术的植被信息提取研究

[J]. 遥感技术与应用, 2014,29(1):164-171.

DOI:10.11873/j.issn.1004-0323.2014.1.0164      URL     [本文引用: 1]

Vegetation is an important part in ecological system and indicating certain landscapes,It is a meaningful work to obtain detailed information of vegetation using GeoEye image with its abundant spatial and spectral information.This study fused the panchromatic band and multispectral bands with four image fusion methods,Image segmentation is the first and critical procedure in the workflow of object\|oriented image analysis,discrepancy between reference polygons and corresponding segment is used to assess segmentation quality in this study.We extracted the vegetation information using classification feature which is selected from the perspective of remote sensing image cognition and geographical understanding.The results showed that Gram\|Schmidt(GS)method is the most effective in fusing panchromatic bands and multispectral bands,And object\|oriented classification is effective in high resolution remote sensing information extraction,the overall accuracy is up to 90.3%.this research provided an effective method for vegetation information extraction.

Bie Q, He L, Zhao C Y .

Study on vegetation information extraction based on object-oriented image analysis

[J]. Remote Sensing Technology and Application, 2014,29(J):164-171.

[本文引用: 1]

徐世武, 杨双, 孙飞 , .

面向对象的高分辨率影像单值分类耕地提取方法研究

[J].测绘通报, 2014(10):78-81.

[本文引用: 1]

Xu S W, Yang S, Sun F , et al.

Method research on cultivated land extraction based on object one-class classification of high-spatial-resolution images

[J].Bulletin of Surveying and Mapping,2014(10):78-81.

[本文引用: 1]

Hay G J, Marceau D J, Dubé P , et al.

A multiscale framework for landscape analysis:Object-specific analysis and upscaling

[J]. Landscape Ecology, 2001,16(6):471-490.

DOI:10.1023/A:1013101931793      URL     [本文引用: 1]

Landscapes are complex systems that require a multiscale approach to fully understand, manage, and predict their behavior. Remote sensing technologies represent the primary data source for landscape analysis, but suffer from the modifiable areal unit problem ( MAUP ). To reduce the effects of MAUP when using remote sensing data for multiscale analysis we present a novel analytical and upscaling framework based on the spatial influence of the dominant objects composing a scene. By considering landscapes as hierarchical in nature, we theorize how a multiscale extension of this object-specific framework may assist in automatically defining critical landscape thresholds, domains of scale, ecotone boundaries, and the grain and extent at which scale-dependent ecological models could be developed and applied through scale.

周春艳 .

面向对象的高分辨率遥感影像信息提取技术

[D]. 青岛:山东科技大学, 2006.

[本文引用: 1]

Zhou C Y .

Object-oriented Information Extraction Technology of High Resolution Remote Sensing Image

[D]. Qingdao:Shandong University of Science and Technology, 2006.

[本文引用: 1]

刘志刚, 史文中, 李德仁 , .

一种基于支撑向量机的遥感影像不完全监督分类新方法

[J]. 遥感学报, 2005,9(4):363-373.

[本文引用: 1]

Liu Z G, Shi W Z, Li D R , et al.

Partially supervised classification of remotely sensed imagery using support vector machines

[J]. Journal of Remote Sensing, 2005,9(4):363-373.

[本文引用: 1]

吕书强, 田巨慧, 杜磊 , .

加权纹理特征在高分辨率遥感影像耕地再分类中的应用

[J]. 测绘科学, 2009,34(s1):67-69.

[本文引用: 1]

Lyu S Q, Tian J H, Du L , et al.

Sub-classification of farmland with weighted textural features in high resolution remote sensing images

[J]. Science of Surveying and Mapping, 2009,34(s1):67-69.

[本文引用: 1]

Thouret J, Kassouk Z, Gupta A , et al.

Tracing the evolution of 2010 Merapi volcanic deposits (Indonesia) based on object-oriented classification and analysis of multi-temporal,very high resolution images

[J]. Remote Sensing of Environment, 2015,170(47):350-371.

DOI:10.1016/j.rse.2015.09.028      URL     [本文引用: 1]

About 40% of the devastated upper catchment was recolonized by vegetation between 2010 and 2012. The recovery also took place in the forested valley margins affected by ash-cloud surges. The morphometric analysis of the initial drainage network, digitized from the 2011 2012 images, demonstrated (1) the resurfacing of pristine 2010 PDC deposits by runoff and (2) incision or remobilization by lahars. It took two years following the eruption in the rugged upper catchment devastated by high-energy surges to fully develop the hydrographic network. It is, however, still rudimentary on gently sloping fans created by overbank PDC deposits in the middle valley, thus suggesting the importance of slope gradient, grain size, permeability and thickness of deposits. As much as 35% of the 2010 PDC deposits, emplaced in the vicinity of the river channels, were remobilized by lahars over the two post-eruption rainy seasons and also by constant mining activities. Studies on the erosion of the pyroclastic deposits after 2012 need to concentrate on the upper reach of the catchment on the south flank.

胡婷 .

遥感图像典型地物特征提取的尺度效应研究

[D]. 西安:西北大学, 2010.

[本文引用: 1]

Hu T .

The Study of Scale Effects in Typical Objects’ Feature Extraction from Remote Sensing Image

[D]. Xi’an:Northwest University, 2010.

[本文引用: 1]

朱秀芳, 潘耀忠, 张锦水 , .

训练样本对TM尺度小麦种植面积测量精度影响研究(Ⅰ)——训练样本与分类方法间分类精度响应关系研究

[J]. 遥感学报, 2007,11(6):826-837.

[本文引用: 1]

Zhu X F, Pan Y Z, Zhang J S , et al.

The effects of training samples on the wheat planting area measure accuracy in TM scale(Ⅰ):The accuracy response of different classifiers to training samples

[J]. Journal of Remote Sensing, 2007,11(6):826-837.

[本文引用: 1]

武鹏飞 .

延怀盆地景观格局动态过程研究

[D]. 北京:首都师范大学, 2013.

[本文引用: 1]

Wu P F .

Research on the Dynamic Process of Landscape Pattern in Yan Huai Basin

[D]. Beijing:Capital Normal University, 2013.

[本文引用: 1]

程起敏 . 基于内容的遥感影像库检索关键技术研究[D].北京:中国科学院研究生院( 遥感应用研究所), 2004.

[本文引用: 1]

Cheng Q M . Reaserch on Key Technologies for Content-based Retrieval from Remote Sensing Image Database[D].Beijing:Graduate University of Chinese Academy of Sciences ( Institute of Remote Sensing Applications), 2004.

[本文引用: 1]

王跃宾 .

面向机器学习的高分辨率光学遥感影像识别方法

[D]. 北京:北京师范大学, 2016.

[本文引用: 1]

Wang Y B .

High Spatial Rseolution Remote Sensing Images Recognition by Means of Machine Learning

[D]. Beijing:Beijing Normal University, 2016.

[本文引用: 1]

Lowe D G .

Distinctive image features from scale-invariant keypoints

[J]. International Journal of Computer Vision, 2004,60(2):91-110.

DOI:10.1023/B:VISI.0000029664.99615.94      URL     [本文引用: 1]

This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

Yang J C, Yu K, Gong Y H, et al.

Linear spatial pyramid matching using sparse coding for image classification

[C]//IEEE Conference on Computer Vision and Pattern Recognition.Miami:Cvpr, 2009: 1794-1801.

[本文引用: 1]

Bazi Y, Melgani F .

Toward an optimal SVM classification system for hyperspectral remote sensing images

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(11):3374-3385.

DOI:10.1109/TGRS.2006.880628      URL     [本文引用: 1]

Recent remote sensing literature has shown that support vector machine (SVM) methods generally outperform traditional statistical and neural methods in classification problems involving hyperspectral images. However, there are still open issues that, if suitably addressed, could allow further improvement of their performances in terms of classification accuracy. Two especially critical issues are: 1) the determination of the most appropriate feature subspace where to carry out the classification task and 2) model selection. In this paper, these two issues are addressed through a classification system that optimizes the SVM classifier accuracy for this kind of imagery. This system is based on a genetic optimization framework formulated in such a way as to detect the best discriminative features without requiring the a priori setting of their number by the user and to estimate the best SVM parameters (i.e., regularization and kernel parameters) in a completely automatic way. For these purposes, it exploits fitness criteria intrinsically related to the generalization capabilities of SVM classifiers. In particular, two criteria are explored, namely: 1) the simple support vector count and 2) the radius margin bound. The effectiveness of the proposed classification system in general and of these two criteria in particular is assessed both by simulated and real experiments. In addition, a comparison with classification approaches based on three different feature selection methods is reported, i.e., the steepest ascent (SA) algorithm and two other methods explicitly developed for SVM classifiers, namely: 1) the recursive feature elimination technique and 2) the radius margin bound minimization method

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发