国土资源遥感, 2019, 31(1): 164-170 doi: 10.6046/gtzyyg.2019.01.22

技术应用

最新GPM降水数据在黄河流域的精度评估

李媛媛1,2, 宁少尉,2, 丁伟1, 金菊良2, 张政1

1.大连理工大学水利工程学院,大连 116023

2.合肥工业大学土木与水利学院,合肥 230009

The evaluation of latest GPM-Era precipitation data in Yellow River Basin

LI Yuanyuan1,2, NING Shaowei,2, DING Wei1, JIN Juliang2, ZHANG Zheng1

1.School of Hydraulic Engineering Dalian University of Technology, Dalian 116023, China

2.School of Civil Engineering, Hefei University of Technology, Hefei 230009, China

通讯作者: 宁少尉(1986-),男,讲师,主要从事遥感水文、水资源管理方面研究。Email:ning@hfut.edu.cn

责任编辑: 张仙

收稿日期: 2017-09-14   修回日期: 2018-05-27   网络出版日期: 2019-03-15

基金资助: 国家重点研发计划项目"大范围旱灾风险综合防范技术".  2017YFC1502405
国家自然科学基金项目"基于多源数据的东部季风区干旱频率空间分布与植被干旱响应研究".  51709071

Received: 2017-09-14   Revised: 2018-05-27   Online: 2019-03-15

作者简介 About authors

李媛媛(1995-),女,硕士研究生,主要从事水文水资源方面研究。Email:18856312016@163.com。 。

摘要

基于黄河流域雨量计网络降水数据,利用相关系数、平均误差、均方根误差和相对误差4个评估指标以及极端降水指数和误差分析方法,研究全球降水测量计划卫星(global precipitation mission,GPM)的2个降水产品(GSMap-gauged和GPM IMERG)的误差空间变化特征、对极端降水的捕捉能力和降水数据精度。结果显示: 2个产品数据都大体存在西部低估,东部高估的现象,而相比于GSMap-gauged产品,GPM IMERG产品在大部分地区的误差更大,并且漏报误差受海拔和降水强度的影响更为显著,但对微量降水的观测较为精确些; 2个降水产品日尺度降水数据统计指标对比表明,GSMap-gauged产品的相关系数更大,平均误差绝对值更小,监测性能更好; 在极端降水观测能力上,GSMap-gauged产品监测能力强于GPM IMERG产品。

关键词: 卫星降水产品 ; 观测 ; 误差

Abstract

Based on the data from the rain gauge stations of the Yellow River Basin and using the evaluation index, extreme precipitation index and error analysis method, the authors studied the spatial and temporal variation characteristics of errors and the accuracy of data of two GPM satellite precipitation products (GSMap-gauged and GPM IMERG) obtained from April 2014 to March 2016 and analyzed the extreme precipitation capturing capability of the two products. The results showed that the two products generally underestimated precipitation in the western region of the basin and overestimated precipitation in the eastern part. Compared with GSMap-gauged, IMERG had bigger errors in most areas. In addition, the phenomenon of missing error in IMERG was more obvious due to elevation and precipitation intensity, but IMERG had a more accurate data for micro-precipitation. The daily scale data statistics showed that GSMap-gauged had a better relevance in each sub-basin, and its mean error is smaller. The correlation coefficient value of extreme precipitation index obtained by GSMap-gauged was higher than that of IMERG.

Keywords: satellite precipitation products ; gauge ; error

PDF (5156KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李媛媛, 宁少尉, 丁伟, 金菊良, 张政. 最新GPM降水数据在黄河流域的精度评估. 国土资源遥感[J], 2019, 31(1): 164-170 doi:10.6046/gtzyyg.2019.01.22

LI Yuanyuan, NING Shaowei, DING Wei, JIN Juliang, ZHANG Zheng. The evaluation of latest GPM-Era precipitation data in Yellow River Basin. REMOTE SENSING FOR LAND & RESOURCES[J], 2019, 31(1): 164-170 doi:10.6046/gtzyyg.2019.01.22

0 引言

降水是全球水循环过程中的基本环节,降水数据对水文模拟、水资源管理、灾害控制等具有重要意义。由于降水具有较大的时空分布差异性,所以获得精确的降水信息十分困难。目前主要有雨量计、气象雷达和遥感卫星3种降水测量方式[1]。雨量计存在空间分布不均和数量稀少的问题,不能很好地捕捉降水的时空变化,评估区域或全球尺度的降水十分困难[2]; 雷达观测能获得大面积的实时高空间分辨率数据,并且能够提供暴雨的内部结构[3],但是雷达监测同样存在不能获得连续的时空降水数据的问题,并且伴有不同的误差,包括平均场误差和随机误差等[4]; 卫星降水测量可以提供连续的降水信息,并且具有分辨率高、覆盖范围大以及不受地形地貌限制的特点[5]。可见,地球观测卫星是目前唯一获得时空上连续降水数据的方式[6,7]

1997年11月热带降水测量(tropical rainfall measuring mission,TRMM)卫星的成功发射,开启了全球降水测量新时代[8]。相对于传统观测,它大幅度提高了降水测量的时空分辨率,但其主要覆盖地区为热带、亚热带地区,监测中大型降水,而对中高纬度地区的微量降水和冻雨,在观测灵敏度上还存在不足[9]。2014年2月28日,由美国国家航空航天局(National Aeronautics and Space Administration,NASA)和日本宇宙航空研究开发机构(Japanese Aerospace Exploration Agency,JAXA)共同研发的全球降水测量计划卫星(global precipitation mission,GPM)成功发射。作为TRMM卫星的继承者,它进一步提高了降水产品的时空分辨率和降水数据的精度,并真正实现了全球范围内的降水观测。GPM核心观测平台携带的仪器设备更加先进,能够更加精确地捕捉微量降水(低于0.5 mm/h)和固态降水[9]; 然而卫星降水数据内部存在一些误差,在使用之前需进行精度检验。不同降水产品在不同地区具有不同的精度,需要分别进行精度评估,目前的研究主要集中于TRMM产品,对于GPM降水产品的研究十分少见。GPM能够提供4种级别产品,其中GPM IMERG和GSMap-gauged产品是最有应用前景且经过校验的时空分辨率最高的卫星降水产品。目前关于GPM IMREG产品的研究大多为大尺度区域分析评价,缺少小尺度评估,而关于GSMap-gauged产品的研究则极少。黄河流域作为我国主要流域之一,在该流域分析降水产品的性能有利于产品的应用与推广。本文以黄河流域为研究区,以雨量计值为实际值进行GPM IMERG和GSMap-gauged的误差组成分析,同时进行2个降水数据的日、月尺度精度评估和极端降水观测能力的比较。

1 研究区概况及数据源

1.1 研究区概况

黄河流域地理位置处于E95°53'119°05',N32°10'41°50'之间,地势呈西高东低。流域多年平均年降水量可达465 mm,分布总趋势是由西北向东南递增; 年均径流总量为580亿m3。随着国民经济发展,黄河流域修建了大量引、蓄、提水工程,上世纪80年代耗用年径流量已达2.82.9×1010 m3,其中城市、工业用水约为1.1×109 m3,其余均为农业用水。黄河径流的水资源利用率约为50%,相比于其他河流,处于较高水平[10]。研究区气象站和高程分布如图1所示。

图1

图1   研究区域图

Fig.1   Map of study area


1.2 数据源

本文使用的地面观测数据来自国际气象信息中心和中国气象管理局发布的2014年4月—2016年3月的日降水分析产品,空间分辨率为0.25°。用于生成日降水分析产品的雨量计数据经过3层检验,包括极值检验、内部连续性检验和空间连续性检验[11],最终验证结果表明日降水分析产品与不同地区的雨量计观测结果具有较好的一致性[12]

本文中的2个卫星降水产品性能参数参见表1,选取的时段与地面观测数据相同。

表1   2个最新的卫星降水产品的主要性能参数

Tab.1  Main performance parameters of the two latest satellite precipitation products

产品空间分辨率/(°)时间分辨率/h覆盖范围发布时间延迟时间提供者
GPM IMERG(v,4)0.10.5N60°S60°2014年3月24个月NASA
GSMap-gauged(v,6)0.11N60°S60°2014年3月12 dJAXA

新窗口打开| 下载CSV


GPM IMERG降水估计是结合GPM携带的传感器数据和地球同步卫星数据,并根据国际气象中心发布的雨量计数据进行修正的卫星降水产品[13]; GSMap-gauged数据集是基于GSMap-MVK,并通过全球日测量数据进行修正的GSMap系列产品[14,15]

由于下载的2个卫星降水产品时空分辨率和日降水分析产品不同,为了能够直接比较,分别将2个产品的数据进行合并,以获得时间分辨率为1 d,空间分辨率为0.25°的降水数据。

2 研究方法

2.1 评估指标

本文选取了平均误差(mean error,ME)、与雨量计观测降水量的相关系数(correlation coefficient,CC)、相对误差(relative bias,RB)和均方根误差(root mean square error,RMSE)4个常用指标定量评价卫星降水产品性能,计算公式分别为

$ME=\frac{1}{N}\sum^{N}_{n=1}(f_{n}-r_{n})$
$CC=\frac{\frac{1}{N}\sum^{N}_{n=1}(f_{n}-\bar{f})(r_{n}-\bar{r})}{\sigma_{f}\sigma_{r}}$
$RB=\frac{\frac{1}{N}\sum^{N}_{n=1}(f_{n}-r_{n})}{\sum^{N}_{n=1}r_{n}}\times100%$
$RMSE=\sqrt{\frac{1}{N}\sum^{N}_{n=1}(f_{n}-r_{n})^2}$

式中: N为样本数; fn为卫星降水产品观测值; rn为雨量计观测降水值; f-为卫星降水产品观测数据平均值; r-为雨量计观测降水数据平均值; σfσr分别为卫星降水产品和雨量计观测降水数据的均方差值。其中,CC值越接近于1、其余3个指标值越接近于0,说明产品误差越小。

2.2 极端降水指数

本文选取了6个常用的极端降水指数评价降水产品监测黄河流域极端降水事件发生的能力,各指数定义见表2

表2   极端降水指数表

Tab.2  Extreme precipitation index table

指数定义单位
RR99p日降水量>99%分位值的日降水数据mm/d
RR95p日降水量>95%分位值的日降水数据mm/d
R20日降水量超过20 mm的天数d
R20TOT日降水量超过20 mm的累计降水量mm
CWD最长连续降水量大于1 mm天数d
CDD最长连续降水量小于1 mm天数d

新窗口打开| 下载CSV


2.3 误差分析

根据Tian等[16]提出的卫星降水产品误差分解方法进行2个产品误差成分评估,可以将降水产品总误差E分解为探测到降水误差H、漏报误差M和空报误差F。分解后误差与总误差关系为

E=H+M+F,

式中: H为卫星降水产品和雨量计均观测到降水时的降水数据差值; M为卫星降水产品观测为无雨而雨量计为有雨时的降水数据差值; F为卫星降水产品观测为有雨而雨量计为无雨时的降水数据差值。所有误差值均为卫星产品数值据减去雨量计数据值。本文选定有雨和无雨的临界值为0.1 mm。

3 结果与分析

3.1 误差空间分布特征

图2显示了2种产品的总误差和分解后误差的空间分布情况。

图2

图2   2个降水产品在黄河流域的年平均误差分布

Fig.2   Annual mean error distribution of two precipitation products in the Yellow River Basin


通过图2(a)可以看出GSMap-gauged产品在黄河流域大部分区域的E为正值,即发生高估降水事件。对比图2(a)—(d)可知E的空间分布特征与H的空间分布较与MF相比更为相似,该现象的产生主要是由于MF值符号相反,误差部分抵消,导致E主要由H组成。GSMap-gauged产品的M值在黄河流域均较小,表明该误差成分受地形影响不明显。对于GPM IMERG产品,E整体表现为东部高估,西部低估,低估降水区域误差主要来自于M图2(b)和(f),(c)和(g),(d)和(h)分别为2个产品的H值、M值和F值空间分布,结果显示: 2个产品的H值空间分布趋势相似,但是GSMap-gauged产品的H绝对值较小; 相比GSMap-gauged产品,GPM IMERG产品受M影响更显著些,尤其是在黄河流域西部高海拔地区,由此导致在黄河流域GPM IMERG产品整体性能相对较差; 2个产品的F绝对值都相对较小,说明2个产品均不易发生空报事件。

海拔是影响卫星降水产品数据误差空间分布特征的主要因素,不同海拔下误差值如图3所示。

图3

图3   降水数据误差随海拔变化趋势

Fig.3   Variation of the error components for both satellite products by elevation


图3(a)和(b)显示2个产品的FH值相差不大,而M相差较大,表明M是导致2个产品数据差异的主要因素。对比图3中各曲线斜率,可知GSMap-gauged产品的各误差值随海拔变化较为平缓,而GPM IMERG产品的各误差值随海拔变化较为剧烈,且GPM IMERG产品的EM值比HF值受海拔影响更加明显。由于F值和M值一正一负,且在低海拔地区F值大于M的绝对值,而高海拔地区F值小于M的绝对值,导致GPM IMERG产品总误差在低海拔区域主要受HF影响,在高海拔地区变为主要受HM影响,成为在高海拔区域低估而低海拔区域高估的主要原因。综合分析可以得出,在变化的地形条件下,GSMap-gauged产品具有更好的降水观测能力,数据精确度更高。

为了进一步研究降水强度大小对误差成分的影响,计算各降水强度区间的降水量总和占总降水量的比值,即降水频率分布,结果如图4所示。其中: 图4(a)为2个产品和雨量计测得的总降水量的降水频率分布; 图4(b)为2个产品和雨量计同时探测到降水时的降水频率分布,图例中"雨量计-GSMap/GPM"表示雨量计和GSMap-gauged/GPM IMERG产品同时观测到降水时,雨量计测得的降水量的频率分布; 图4(c)为2个产品相对于雨量计漏报降水量的降水频率分布; 图4(d)为2个产品相对于雨量计空报降水量的降水频率分布。

图4

图4   降水频率分布图

Fig.4   Frequency distributions of the total precipitation as well as the hit, missed and false precipitation


图4(a)可知,GSMap-gauged产品高估了降水量小于8 mm/d的降水,低估了降水量大于16 mm/d的降水; GPM IMERG产品低估了降水量小于32 mm/d的降水,高估了降水量大于32 mm/d的降水; 当降水量小于2 mm/d时,GPM IMERG产品的监测结果和雨量计结果更为接近,即对微量降水的监测能力更好。2个产品的探测到降水量与总降水量数值较漏报和空报降水量更为接近,说明探测到降水量占总降水量的比重最大。图4(c)显示GPM IMERG产品的漏报降水量发生频率高,最大值约是GSMap-gauged产品数值的4倍,说明GPM IMERG更易发生漏报事件。图4(d)显示2个产品空报降水量频率分布几乎重合,相差甚微。卫星降水数据的误差分解研究能够为数据使用者对数据在不同使用目标环境下的适用性提供更有依据的判断,也能为数据制作机构改进降水反演算法、提高数据精度提供信息支持。

3.2 黄河流域降水数据精度评估

图5为各子流域2个产品在日尺度上CCME的空间分布。

图5

图5   日尺度上CC值和ME值空间分布

Fig.5   Spatial distributions of CC and ME at the daily scale


图5(a)和(b)为2个降水产品日尺度数据在2014年4月至2016年3月期间各子流域的CC值。结果显示GSMap-gauged产品在各子流域CC值均大于0.7,高于GPM IMERG产品,表明GSMap-gauged产品数据和实测雨量数据一致性更好; GSMap-gauged产品的CC值在空间上分布较为均匀,而GPM IMERG产品受地形影响较大,海拔越高,数据精确度越低,说明GSMap-gauged产品对地形的适应能力更强。图5(c)和(d)为2个产品的ME值的空间分布,可以看出GSMap-gauged产品的误差较小,ME值在[-0.2,0.2]之间,而GPM IMERG产品的ME值波动较大,在[-1.0,0.35]之间。除兰州至河口镇和三门峡至花园口流域外,GSMap-gauged产品的ME值均小于GPM IMERG产品,数据精确度更高。2个产品误差在空间变化趋势相一致,均为西部低估,东部高估。图6为2个产品在2014年4月至2016年3月期间月尺度数据CCME值,结果显示空间变化规律和日尺度类似,但月尺度降水数据CC值高于日尺度,数据的准确性更高,能够更准确地显示月降水情况。

图6

图6   月尺度上CC值和ME值空间分布

Fig.6   Spatial distributions of CC and ME at the monthly scale


根据日尺度降水数据,按月计算2个产品降水数据CCRMSE值,结果如图7所示。2个产品在4月到9月期间CC值均较高,但同时RMSE值也更大。冬季(12月到2月)变化规律正好相反。该变化的产生主要与降水量有关,降水量越大拟合精度越高,但同时误差也越大。对比2个产品可以发现,GSMap-gauged产品各月CC值均大于GPM IMERG产品,且RMSE值更小,数据的精确度更高。

图7

图7   月降水数据CCRMSE

Fig.7   Monthly precipitation data CC and RMSE values


3.3 极端降水事件监测能力比较

计算2个降水产品与雨量计的RR99p,RR95p,R20,R20TOT,CWDCDD 6个极端降水指数值,并分别作散点图,如图8(a)—(f)所示。结果表明,GSMap-gauged产品的6组极端降水指数的CC值均大于GPM IMERG产品,并且GSMap-gauged产品所有极端降水指数的RMSE值也比GPM IMERG小,表明GSMap-gauged产品的极端降水指数和雨量计拟合效果更好,能够更好地监测极端降水的发生。对于RR99p指数,GSMap-gauged产品的RB值为-11%,而GPM IMERG产品的RB值为3.78%,这可以追溯到图4(a)显示的结果: 当降水强度大于16 mm/d时,GSMap-gauged产品会低估降水量,而GPM IMERG产品会高估降水量大于32 mm/d的降水。对于RR95p指标,2个产品的RB值均为负数,对比图4(a),可以判断RR95p值最有可能发生在1632 mm/d。GPM IMERG产品的RR99PRR95PRB值符号相反,说明极有可能在RR99PRR95P值之前存在1个阈值,GPM IMERG产品会低估小于阈值的降水,而高估大于阈值的降水,可通过校正该值前后数据提高GPM IMERG产品精度。虽然GSMap-gauged产品的R20和R20TOT指数的相对误差绝对值较GPM IMERG产品大,但是RMSE值小于GPM IMERG产品,说明利用GSMap-gauged研究黄河流域内某区域降水量大于20 mm降水的天数和降水总量,数据更准确。对于CWDCDD指数,2个产品的CWDCC值相对较高,而CDD指数的CC值较低,相关性相对较差,尤其GPM IMERG产品的CC值为-0.2,表明利用GPM IMERG产品分析连续干旱的天数与实际情况相差会很大,结果不具有参考意义。从极端降水监测角度分析2个产品性能,可知GSMap-gauged产品对极端降水事件的监测结果更符合实际值。

图8

图8   6个极端降水指数有色密度散点图

Fig.8   Density-colored scatterplots of six extreme precipitation indices


4 结论

1)2个产品都普遍存在西部低估,东部高估的现象,相比GSMap-gauged产品,GPM IMERG产品在大部分地区误差更大。对于海拔和降水强度影响因子,GPM IMERG产品的漏报误差受其影响更为显著,但是GPM IMERG在微量降水的观测上能力更强。

2)2个降水产品日尺度降水数据统计指标对比结果表明,GSMap-gauged产品的CC值更大,ME绝对值更小,监测性能更好。月尺度降水数据空间变化规律和日尺度类似,但其数据CC更大。

3)2个降水产品监测的降水数据的精确性在时间上呈周期性变化,大致为冬季数据CC值较小,夏季数据CC值较大。

4)在极端降水观测能力上,GSMap-gauged产品的所有极端降水指数CC值均大于GPM IMERG产品,并且GSMap-gauged产品所有极端降水指数的RMSE值也比GPM IMERG产品小,说明GSMap-gauged产品对极端降水监测数据精确度高,但是2个产品的CDD值的相关性都较差,尤其GPM IMERG呈负相关。

2种降水产品的性能评估结果反映了高分辨率产品在黄河流域的不同误差特点,可进一步提高GSMap-gauged对微量降水观测的灵敏度,减小地形因素对GPM IMERG的影响,并可增加GPM IMERG对降水事件的捕捉能力,减少漏报事件的发生。

本文的不足之处在于,由于研究是以雨量计值为真值,而雨量计数据仅代表雨量计所在地的点雨量,数据的空间代表性没有验证,导致文章的结论具有不确定性,仅为数据使用者提供参考。希望相关的水文定量遥感研究机构、气象、水文部门加快建立具有卫星像元尺度代表性的降水测试系统和卫星降水数据的真实性检验方法,以促进卫星降水产品更好地应用于水文研究。

参考文献

Tang G Q, Ma Y Z, Long D , et al.

Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales

[J]. Journal of Hydrology, 2016,533:152-167.

DOI:10.1016/j.jhydrol.2015.12.008      URL     [本文引用: 1]

The post-real time product of Day-1 Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) is evaluated over Mainland China from April to December 2014 at the hourly timescale, against data from hourly ground-based observations. In addition, the IMERG product is compared with its predecessor-the Version-7 post-real-time 3B42 (3B42V7) product of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) at its original 3-hourly and then daily timescales for the same period. All the products are cross-evaluated at gridded, regional, and national scales. Results show that: (1) the Day-1 IMERG shows appreciably better performance than 3B42V7 at both sub-daily and daily timescales, and all the three spatial scales. The gap between the two products is more significant at the sub-daily resolution; (2) Out of the six sub-regions of China, IMERG especially performs better than 3B42V7 at the mid- and high-latitudes, as well as relatively dry climate regions; (3) IMERG can better reproduce the probability density function (PDF) in terms of precipitation intensity, particularly in the low ranges; and (4) although IMERG better captures the precipitation diurnal variability, both products have room to further improve their capability, particularly in the dry climate and high-latitude regions. This study is among the earliest evaluation and comparison of IMERG and 3B42V7 products, which could be valuable in providing reference for the development of IMERG algorithms, associated global products, and various applications as well.

Buarque D C, De Paiva R C D, Clarke R T .

A comparison of Amazon rainfall characteristics derived from TRMM,CMORPH and the Brazilian national rain gauge network

[J]. Journal of Geophysical Research Atmospheres, 2011,116:D19.

DOI:10.1029/2011JD016060      URL     [本文引用: 1]

[1] This paper compares four selected characteristics (mean annual rainfall; mean number of wet days in the year; mean number of days with 2mm or more of rain; and mean 95% quantile of daily rainfall) computed from the Brazilian rain gauge network in the Amazon region, and from the satellite-derived data sets TRMM 3B42 and CMORPH. Comparisons were made at 488 sites over the years 2003 2005, the period for which all three sources provide data, and rainfall characteristics were calculated only from those days in the year with data from all three sources. TRMM and rain gauges mean annual rainfalls were fairly similar, but CMORPH estimates were greater than either, although the statistical significance of the differences were greatly reduced when spatial correlation was allowed for. However, differences between the mean numbers of days with rain (and those with 2mm or more) calculated from the three sources, were very marked, and the differences usually persisted when the errors in the differences included the effects of spatial correlation. Mean 95% quantile of daily rainfall calculated from CMORPH and from rain gauges were shown to be very similar. Over all 488 sites, however, mean annual rainfall calculated from CMORPH was considerably greater than that calculated from rain gauge records, and this result was explained by an analysis of daily rainfalls that exceeded their 95% quantile. The paper emphasizes that, unless spatial correlation is allowed for, uncertainty in rainfall characteristics will be under-estimated, and the apparent statistical significance of differences between values obtained from alternative data sets will be over-estimated.

Germann U, Galli G, Boscacci M , et al.

Radar precipitation measurement in a mountainous region

[J]. Quarterly Journal of the Royal Meteorological Society, 2006,132(618):1669-1692.

DOI:10.1256/qj.05.190      URL     [本文引用: 1]

A large-sample comparison between radar precipitation estimates and ground observations from a high-resolution gauge network reveals distinct improvements achieved by the modifications of the past 8 years. The verification takes into account all days of the period 1997-2004 and gauge locations spread over all of Switzerland. Particular attention was paid to the definition of a set of meaningful and robust quality parameters. This rigorous and systematic verification approach may become a standard for objective judgement of radar performance. Copyright 2006 Royal Meteorological Society

Dinku T, Anagnostou E N, Borga M .

Improving Radar-based estimation of rainfall over complex terrain

.[J]. Journal of Applied Meteorology, 2007,41(12):1163-1178.

DOI:10.1175/1520-0450(2002)0412.0.CO;2      URL     [本文引用: 1]

This paper investigates a multicomponent radar-based rainfall estimation algorithm that includes optimum parameter estimation and error correction schemes associated with radar operation over mountainous terrain. Algorithm preprocessing steps include correction for terrain blocking, adjustment for rain attenuation, and interpolation of reflectivity data from polar radar coordinates to a three-level (1, 2, and 3 km) vertically integrated Cartesian grid. The error correction schemes investigated herein include a simple but efficient approach to correct for the vertical variation of reflectivity and a stochastic filtering approach for mean-field radar-rainfall bias adjustment. The primary algorithm parameters are estimated through a global optimization scheme. Eight major flood-inducing storm events observed coincidentally by a C-band weather radar and 39 rain gauge stations over an alpine region of northeast Italy are used. We describe sensitivity analysis of the parameter values obtained from global optimization, the improvements in accuracy owing to the implementation of the different preprocessing and error correction schemes, and the overall improvement achieved as compared with previous algorithm studies in the area. The advantages of performing vertical integration versus using the lowest-available-elevation radar field, applying stochastic filtering versus the deterministic approach for mean field bias, and estimating the algorithm parameters through optimization are demonstrated.

嵇涛, 杨华, 刘睿 , .

TRMM卫星降水数据在川渝地区的适用性分析

[J]. 地理科学进展, 2014,33(10):1375-1386.

DOI:10.11820/dlkxjz.2014.10.009      URL     Magsci     [本文引用: 1]

在地形复杂的川渝地区,利用72 个气象站点的实测降水数据对TRMM( Tropical Rainfall MeasurementMission) 卫星降水数据的精度分别在年、季和月尺度上进行验证,并进一步分析了高程和坡度对月尺度验证结果的影响,同时借助主成分分析法,对比了高程与坡度对TRMM 3B43 降水数据的影响程度。结果表明:TRMM3B43 估算的年降水量在川渝地区平均偏高5.38%,其中西部高原区估算结果比中东部地区相对精确。TRMM3B43 与气象站点的季尺度降水数据拟合优度较高,但各季拟合优度之间存在差异,其中春季降水的拟合优度高于其余季节。而TRMM 3B43 的月数据与站点实测降水数据拟合优度<i>R</i><sup>2</sup>=0.7615,相关系数<i>R</i>=0.87,表明两者之间相关性显著,数据精度较高;就单个站点而言,大部分站点相关系数较高,误差较小,但叙永站相关系数相对较低,小金、雅安、雷波、盐源以及攀枝花站点数据误差相对较大。高程对数据精度的影响较坡度大,且呈现三次非线性回归的变化特征,随着高程的升高,<i>R</i>呈现增大的变化趋势,|<i>Bias</i>(%)|则呈现出增大—减小—增大的变化趋势;坡度对降水数据精度的影响相对较小且变化规律也较复杂,整体上随坡度变化,TRMM 3B43 数据精度受到明显的影响。

Ji T, Yang H, Liu R , et al.

Applicability analysis of the TRMM precipitation data in the Sichuan-Chongqing region

[J]. Progress in Geography, 2014,33(10):1375-1386.

Magsci     [本文引用: 1]

Hong Y, Chen S, Xue X W , et al.

Global precipitation estimation and applications

[J]. Multiscale Hydrologic Remote Sensing, 2012: 371-386.

[本文引用: 1]

Hou A Y, Kakar R, Neeck S , et al.

The global precipitation measurement mission

[J]. Bulletin of the American Meteorological Society, 2014,95(5):701-722.

DOI:10.1175/bams-d-13-00164.1      URL     [本文引用: 1]

Precipitation affects many aspects of our everyday life. It is the primary source of freshwater and has significant socioeconomic impacts resulting from natural hazards such as hurricanes, floods, droughts, and landslides. Fundamentally, precipitation is a critical component of the global water and energy cycle that governs the weather, climate, and ecological systems. Accurate and timely knowledge of when, where, and how much it rains or snows is essential for understanding how the Earth system functions and for improving the prediction of weather, climate, freshwater resources, and natural hazard events. The Global Precipitation Measurement (GPM) mission is an international satellite mission specifically designed to set a new standard for the measurement of precipitation from space and to provide a new generation of global rainfall and snowfall observations in all parts of the world every 3 h. The National Aeronautics and Space Administration (NASA) and the Japan Aerospace and Exploration Agency (JAXA) successfully launched the Core Observatory satellite on 28 February 2014 carrying advanced radar and radiometer systems to serve as a precipitation physics observatory. This will serve as a transfer standard for improving the accuracy and consistency of precipitation measurements from a constellation of research and operational satellites provided by a consortium of international partners. GPM will provide key measurements for understanding the global water and energy cycle in a changing climate as well as timely information useful for a range of regional and global societal applications such as numerical weather prediction, natural hazard monitoring, freshwater resource management, and crop forecasting.

Ning S W, Wang J, Jin J L , et al.

Assessment of the latest GPM-Era high-resolution satellite precipitation products by comparison with observation gauge data over the Chinese mainland

[J]. Water, 2016,8(11):481-497.

DOI:10.3390/w8110481      URL     [本文引用: 1]

唐国强, 万玮, 曾子悦 , .

全球降水测量(GPM)计划及其最新进展综述

[J]. 遥感技术与应用, 2015,30(4):607-615.

DOI:10.11873/j.issn.1004-0323.2015.4.0607      URL     Magsci     [本文引用: 2]

<p>GPM降水计划是继TRMM之后新一代全球卫星降水产品,其核心观测平台已于2014年2月28日发射,卫星群目前由10颗卫星组成,未来还有可能继续扩充。但目前国内还缺少专门介绍GPM计划及其产品的最新文章。新一代GPM降水产品分为4级,与以往的卫星降水产品相比具有更高的精度、更大的覆盖范围、更高时空分辨率,能够提供全球范围基于微波的3 h以内以及基于微波红外IMERG算法的30 min的雨雪数据产品,有利于促进水文、气象、农业和灾害等学科的研究和应用。与着重观测热带亚热带地区降水的TRMM相比,GPM能够更加精确地捕捉微量降水(&lt;0.5 mm&middot;h<sup>-1</sup>)和固态降水,这两种类型降水的观测对中高纬度地区和高原地区具有重要意义。对GPM计划的核心观测平台、算法产品、地面验证和应用前景等进行了阐述,有利于GPM产品在国内的应用和推广。</p>

Tang G Q, Wan W, Zeng Z Y , et al.

An overview of the global precipitation measurement (GPM) mission and it's latest development

[J]. Remote Sensing Technology and Application, 2015,30(4):607-615.

Magsci     [本文引用: 2]

孙永军 .

黄河流域湿地遥感动态监测研究

[D]. 北京:北京大学, 2008.

[本文引用: 1]

Sun Y J .

Study of Remote Sensing Monitoring of Wetland Dynamic Change in Yellow River Drainage Area

[D]. Beijing:Peking University, 2008.

[本文引用: 1]

Guo H, Chen S, Bao A M , et al.

Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China

[J].Atmospheric Research, 2016, 176-177(1):121-133.

DOI:10.1016/j.atmosres.2016.02.020      URL     [本文引用: 1]

61Gauge-adjusted IMERG_Cal greatly outperforms real-time IMERG_Uncal and is slightly better than 3B42V7 over mainland China.61IMERG_Uncal, IMERG_Cal and 3B42V7 show poor performances in detecting precipitation in winter.61Great overestimation or underestimation errors are found in IMERG_Uncal over most mainland China.

Shen Y, Xiong A Y .

Validation and comparison of a new gauge-based precipitation analysis over mainland China

[J]. International Journal of Climatology, 2015,36(1):252-265.

DOI:10.1002/joc.4341      URL     [本文引用: 1]

ABSTRACT Through optimizing the daily precipitation climatology, a new high-resolution (0.25° × 0.25° lat./lon.) gridded daily precipitation analysis over Mainland China was developed based on the optimal interpolation (OI) method. This product, based on about 2400 gauge stations over Mainland China from 1955 to the present, is called the China Gauge-based Daily Precipitation Analysis (CGDPA). In this study, using independent precipitation observations as the benchmark, CGDPA and the Climate Prediction Center Unified gauge dataset (CPC_UNI) from the National Oceanic and Atmospheric Administration (NOAA) are validated from May to September of 2008–2010 on a 0.5° × 0.5° lat./lon. grid. The CGDPA has smaller bias and root mean square error, and higher spatial correlation with the validation data than CPC_UNI. Further investigation indicates that this improvement is mainly owing to the larger number of gauges used in the CGDPA. The East Asia gauge analysis (EA_Gauge) is also introduced to comparatively evaluate the capabilities of monitoring precipitation events with different rainfall rates over Mainland China. CGDPA can capture more strong rainfall events while CPC_UNI and EA_Gauge tend to smooth the precipitation structure and miss more local strong rainfall events with precipitation larger than 25 mm day611 over Mainland China. The long-term precipitation time series described by the CGDPA and EA_Gauge agree very well while CPC_UNI substantially underestimates precipitation especially over the sparse-gauged regions and after 1982. CGDPA is thus suggested as a readily available input to applications over Mainland China, whenever possible.

Ning S W, Song F, Udmale P , et al.

Error analysis and evaluation of the latest GSMap and IMERG precipitation product over eastern China

[J]. Advances in Meteorology, 2017(11):1-16.

[本文引用: 1]

Ushio T, Sasashige K, Kubota T , et al.

A Kalman filter approach to the global satellite mapping of precipitation (GSMaP) from combined passive microwave and infrared radiometric data

[J]. Journal of the Meteorological Society of Japan, 2009,87A(3):137-151.

DOI:10.2151/jmsj.87A.137      URL     [本文引用: 1]

Xie P P, Yatagai A, Chen M Y , et al.

A Gauge-based analysis of daily precipitation over East Asia

[J]. Journal of Hydrometeorology, 2007,8(3):607-626.

DOI:10.1175/JHM583.1      URL     [本文引用: 1]

Tian Y D , Peters-Lidard C D, Eylander J B, et al.

Component analysis of errors in satellite-basd precipitation estimates

[J]. Journal of Geophysical Research Atmospheres, 2009,114(2):137-144.

DOI:10.1029/2009JD011949      URL     [本文引用: 1]

[1] Satellite-based precipitation estimates have great potential for a wide range of critical applications, but their error characteristics need to be examined and understood. In this study, six (6) high-resolution, satellite-based precipitation data sets are evaluated over the contiguous United States against a gauge-based product. An error decomposition scheme is devised to separate the errors into three independent components, hit bias, missed precipitation, and false precipitation, to better track the error sources associated with the satellite retrieval processes. Our analysis reveals the following. (1) The three components for each product are all substantial, with large spatial and temporal variations. (2) The amplitude of individual components sometimes is larger than that of the total errors. In such cases, the smaller total errors are resulting from the three components canceling one another. (3) All the products detected strong precipitation (>40 mm/d) well, but with various biases. They tend to overestimate in summer and underestimate in winter, by as much as 50% in either season, and they all miss a significant amount of light precipitation (<10 mm/d), up to 40%. (4) Hit bias and missed precipitation are the two leading error sources. In summer, positive hit bias, up to 50%, dominates the total errors for most products. (5) In winter, missed precipitation over mountainous regions and the northeast, presumably snowfall, poses a common challenge to all the data sets. On the basis of the findings, we recommend that future efforts focus on reducing hit bias, adding snowfall retrievals, and improving methods for combining gauge and satellite data. Strategies for future studies to establish better links between the errors in the end products and the upstream data sources are also proposed.

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发