递归滤波与KNN的高光谱遥感图像分类方法
涂兵, 张晓飞, 张国云, 王锦萍, 周瑶

Hyperspectral image classification via recursive filtering and KNN
Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU
表1 Indian Pines高光谱图像不同算法分类精度(10%训练样本)
Tab.1 Indian Pines data set classification accuracy of different algorithms (10% of training samples)
指标 类别 训练样
本/个
测试样
本/个
SVM SRC JSRC EMP EPF IFRF LMLL RF-KNN
CA Alfalfa 10 36 79.31
(7.32)
61.58
(10.62)
94.44
(8.10)
94.44
(2.78)
97.86
(6.68)
99.73
(0.85)
94.44
(0.00)
94.44
(0.00)
Corn-N 143 1 285 78.49
(0.83)
53.06
(2.96)
93.81
(2.00)
87.77
(2.06)
95.95
(2.28)
97.55
(0.99)
94.75
(0.37)
98.49
(0.56)
Corn-M 83 747 80.74
(2.78)
50.33
(3.65)
91.51
(1.19)
92.74
(2.28)
96.00
(2.56)
98.59
(0.91)
73.76
(0.00)
98.69
(0.48)
Corn 34 203 67.72
(5.46)
37.56
(3.80)
91.74
(3.54)
85.73
(5.36)
92.21
(5.33)
97.62
(1.29)
98.59
(0.00)
99.70
(0.44)
Grass-M 48 435 90.28
(2.20)
83.77
(1.80)
92.37
(3.38)
92.00
(2.81)
99.00
(0.88)
98.96
(1.07)
95.86
(0.00)
97.33
(3.34)
Grass-T 23 707 89.28
(2.00)
91.39
(1.22)
93.55
(1.00)
97.63
(0.67)
95.15
(2.97)
99.05
(0.63)
100.00
(0.00)
96.94
(1.83)
Grass-P 15 13 83.04
(13.35)
82.00
(8.37)
100.00
(0.00)
94.44
(5.56)
97.24
(6.40)
91.43
(18.07)
100.00
(0.00)
100.00
(0.00)
Hay-W 28 450 97.47
(0.90)
93.30
(0.92)
99.02
(0.71)
99.91
(0.13)
99.99
(0.05)
100.00
(0.00)
100.00
(0.00)
100.00
(0.00)
Oats 15 5 46.35
(9.95)
55.00
(13.94)
62.00
(40.25)
100.00
(0.00)
100.00
(0.00)
81.82
(17.64)
100.00
(0.00)
100.00
(0.00)
Soybean-N 150 822 80.02
(2.17)
66.17
(3.90)
91.08
(1.93)
88.88
(0.78)
92.21
(4.48)
96.84
(1.35)
90.83
(0.00)
99.12
(0.89)
Soybean-M 246 2 209 80.84
(2.11)
70.16
(1.47)
97.08
(1.16)
95.38
(0.88)
91.71
(4.46)
98.07
(1.04)
91.67
(0.00)
99.29
(0.37)
Soybean-C 60 533 78.99
(3.24)
45.51
(2.62)
84.54
(4.64)
86.83
(2.37)
94.73
(3.60)
98.08
(1.07)
93.21
(0.34)
98.16
(0.98)
Wheat 21 184 93.80
(2.63)
91.74
(3.06)
86.20
(2.89)
99.24
(0.62)
100.00
(0.00)
97.60
(2.30)
99.46
(0.00)
99.02
(0.81)
Woods 127 1 138 91.96
(1.49)
89.19
(1.51)
99.51
(0.26)
99.63
(0.26)
95.11
(2.86)
99.70
(0.35)
97.98
(0.00)
99.72
(0.40)
Buildings 35 351 73.95
(4.28)
35.45
(1.85)
92.08
(4.33)
97.32
(1.69)
95.27
(2.64)
97.38
(1.69)
94.87
(0.00)
98.46
(1.47)
Stone 37 56 93.97
(4.13)
89.88
(2.64)
94.29
(4.96)
98.57
(0.80)
96.40
(3.11)
95.98
(5.05)
94.64
(0.00)
99.64
(0.80)
OA 83.33
(0.77)
68.47
(0.59)
94.19
(0.57)
94.41
(0.84)
94.47
(1.80)
98.23
(0.18)
94.45
(0.78)
98.82
(0.29)
AA 81.64
(1.30)
68.51
(1.89)
91.45
(1.27)
94.41
(0.84)
96.18
(0.89)
96.79
(1.80)
95.69
(0.51)
98.65
(0.33)
Kappa 80.90
(0.90)
64.02
(0.63)
93.37
(0.65)
92.77
(0.49)
93.67
(2.07)
97.98
(0.21)
93.65
(0.90)
98.69
(0.29)