递归滤波与KNN的高光谱遥感图像分类方法
|
涂兵, 张晓飞, 张国云, 王锦萍, 周瑶
|
Hyperspectral image classification via recursive filtering and KNN
|
Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU
|
|
表1 Indian Pines高光谱图像不同算法分类精度(10%训练样本)
|
Tab.1 Indian Pines data set classification accuracy of different algorithms (10% of training samples)
|
|
指标 类别 | 训练样 本/个 | 测试样 本/个 | SVM | SRC | JSRC | EMP | EPF | IFRF | LMLL | RF-KNN | CA | Alfalfa | 10 | 36 | 79.31 (7.32) | 61.58 (10.62) | 94.44 (8.10) | 94.44 (2.78) | 97.86 (6.68) | 99.73 (0.85) | 94.44 (0.00) | 94.44 (0.00) | Corn-N | 143 | 1 285 | 78.49 (0.83) | 53.06 (2.96) | 93.81 (2.00) | 87.77 (2.06) | 95.95 (2.28) | 97.55 (0.99) | 94.75 (0.37) | 98.49 (0.56) | Corn-M | 83 | 747 | 80.74 (2.78) | 50.33 (3.65) | 91.51 (1.19) | 92.74 (2.28) | 96.00 (2.56) | 98.59 (0.91) | 73.76 (0.00) | 98.69 (0.48) | Corn | 34 | 203 | 67.72 (5.46) | 37.56 (3.80) | 91.74 (3.54) | 85.73 (5.36) | 92.21 (5.33) | 97.62 (1.29) | 98.59 (0.00) | 99.70 (0.44) | Grass-M | 48 | 435 | 90.28 (2.20) | 83.77 (1.80) | 92.37 (3.38) | 92.00 (2.81) | 99.00 (0.88) | 98.96 (1.07) | 95.86 (0.00) | 97.33 (3.34) | Grass-T | 23 | 707 | 89.28 (2.00) | 91.39 (1.22) | 93.55 (1.00) | 97.63 (0.67) | 95.15 (2.97) | 99.05 (0.63) | 100.00 (0.00) | 96.94 (1.83) | Grass-P | 15 | 13 | 83.04 (13.35) | 82.00 (8.37) | 100.00 (0.00) | 94.44 (5.56) | 97.24 (6.40) | 91.43 (18.07) | 100.00 (0.00) | 100.00 (0.00) | Hay-W | 28 | 450 | 97.47 (0.90) | 93.30 (0.92) | 99.02 (0.71) | 99.91 (0.13) | 99.99 (0.05) | 100.00 (0.00) | 100.00 (0.00) | 100.00 (0.00) | Oats | 15 | 5 | 46.35 (9.95) | 55.00 (13.94) | 62.00 (40.25) | 100.00 (0.00) | 100.00 (0.00) | 81.82 (17.64) | 100.00 (0.00) | 100.00 (0.00) | Soybean-N | 150 | 822 | 80.02 (2.17) | 66.17 (3.90) | 91.08 (1.93) | 88.88 (0.78) | 92.21 (4.48) | 96.84 (1.35) | 90.83 (0.00) | 99.12 (0.89) | Soybean-M | 246 | 2 209 | 80.84 (2.11) | 70.16 (1.47) | 97.08 (1.16) | 95.38 (0.88) | 91.71 (4.46) | 98.07 (1.04) | 91.67 (0.00) | 99.29 (0.37) | Soybean-C | 60 | 533 | 78.99 (3.24) | 45.51 (2.62) | 84.54 (4.64) | 86.83 (2.37) | 94.73 (3.60) | 98.08 (1.07) | 93.21 (0.34) | 98.16 (0.98) | Wheat | 21 | 184 | 93.80 (2.63) | 91.74 (3.06) | 86.20 (2.89) | 99.24 (0.62) | 100.00 (0.00) | 97.60 (2.30) | 99.46 (0.00) | 99.02 (0.81) | Woods | 127 | 1 138 | 91.96 (1.49) | 89.19 (1.51) | 99.51 (0.26) | 99.63 (0.26) | 95.11 (2.86) | 99.70 (0.35) | 97.98 (0.00) | 99.72 (0.40) | Buildings | 35 | 351 | 73.95 (4.28) | 35.45 (1.85) | 92.08 (4.33) | 97.32 (1.69) | 95.27 (2.64) | 97.38 (1.69) | 94.87 (0.00) | 98.46 (1.47) | Stone | 37 | 56 | 93.97 (4.13) | 89.88 (2.64) | 94.29 (4.96) | 98.57 (0.80) | 96.40 (3.11) | 95.98 (5.05) | 94.64 (0.00) | 99.64 (0.80) | OA | — | — | 83.33 (0.77) | 68.47 (0.59) | 94.19 (0.57) | 94.41 (0.84) | 94.47 (1.80) | 98.23 (0.18) | 94.45 (0.78) | 98.82 (0.29) | AA | — | — | 81.64 (1.30) | 68.51 (1.89) | 91.45 (1.27) | 94.41 (0.84) | 96.18 (0.89) | 96.79 (1.80) | 95.69 (0.51) | 98.65 (0.33) | Kappa | — | — | 80.90 (0.90) | 64.02 (0.63) | 93.37 (0.65) | 92.77 (0.49) | 93.67 (2.07) | 97.98 (0.21) | 93.65 (0.90) | 98.69 (0.29) |
|
|
|