递归滤波与KNN的高光谱遥感图像分类方法
|
涂兵, 张晓飞, 张国云, 王锦萍, 周瑶
|
Hyperspectral image classification via recursive filtering and KNN
|
Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU
|
|
表2 Indian Pines高光谱图像不同算法分类精度(1%训练样本)
|
Tab.2 Indian Pines data set classification accuracy of different algorithms (1% of training samples)
|
|
指标 类别 | 训练样 本/个 | 测试样 本/个 | SVM | SRC | JSRC | EMP | EPF | IFRF | LMLL | RF-KNN | CA | Alfalfa | 3 | 43 | 72.25 (5.43) | 63.26 (18.20) | 92.56 (9.21) | 87.44 (6.41) | 72.42 (30.15) | 88.35 (31.74) | 95.35 (0.00) | 95.35 (0.00) | Corn-N | 14 | 1 414 | 47.63 (7.37) | 40.07 (5.91) | 69.99 (6.50) | 57.39 (4.59) | 61.20 (8.91) | 83.17 (8.34) | 69.12 (0.42) | 83.97 (10.41) | Corn-M | 8 | 822 | 55.60 (15.51) | 31.33 (6.92) | 55.28 (8.60) | 63.64 (7.29) | 73.96 (18.37) | 71.08 (10.79) | 44.09 (0.11) | 74.67 (14.06) | Corn | 3 | 234 | 35.98 (11.21) | 25.37 (8.55) | 45.04 (15.61) | 29.79 (9.89) | 59.62 (33.29) | 70.28 (12.62) | 33.42 (0.19) | 92.22 (8.31) | Grass-M | 6 | 477 | 74.25 (12.10) | 63.59 (10.07) | 70.23 (26.81) | 77.04 (9.38) | 90.54 (12.56) | 85.61 (9.82) | 69.18 (0.00) | 89.48 (3.16) | Grass-T | 7 | 723 | 76.13 (6.57) | 77.25 (8.63) | 85.48 (3.41) | 86.07 (13.92) | 74.85 (6.53) | 90.66 (5.52) | 98.76 (0.00) | 97.10 (1.64) | Grass-P | 3 | 25 | 30.57 (15.22) | 89.04 (5.76) | 92.00 (12.33) | 90.80 (9.25) | 81.41 (30.42) | 52.28 (25.97) | 96.00 (0.00) | 100.00 (0.00) | Hay-W | 5 | 473 | 93.09 (5.37) | 73.82 (12.02) | 84.90 (8.79) | 94.82 (3.02) | 98.42 (2.99) | 100.00 (0.00) | 99.79 (0.00) | 100.00 (0.00) | Oats | 3 | 17 | 18.99 (9.95) | 68.35 (20.16) | 94.12 (10.19) | 96.47 (7.44) | 48.01 (37.62) | 27.79 (20.58) | 100.00 (0.00) | 96.47 (7.89) | Soybean-N | 10 | 962 | 53.88 (7.46) | 49.04 (8.64) | 71.10 (5.46) | 69.27 (9.05) | 70.51 (15.60) | 72.87 (10.46) | 73.80 (2.79) | 84.30 (4.51) | Soybean-M | 24 | 2 431 | 59.35 (4.18) | 61.04 (4.71) | 82.59 (5.06) | 77.10 (6.22) | 66.08 (9.18) | 85.91 (4.45) | 79.66 (0.13) | 93.58 (4.15) | Soybean-C | 6 | 587 | 38.95 (8.03) | 21.85 (6.44) | 48.07 (8.57) | 39.93 (7.11) | 56.11 (22.14) | 70.91 (12.35) | 55.54 (0.76) | 80.20 (9.34) | Wheat | 2 | 203 | 84.36 (4.03) | 77.38 (11.01) | 79.61 (12.27) | 95.81 (1.89) | 96.16 (3.87) | 80.46 (12.73) | 99.31 (0.44) | 96.75 (2.38) | Woods | 13 | 1 252 | 84.44 (2.87) | 80.95 (6.80) | 92.54 (7.27) | 87.61 (5.30) | 87.10 (5.07) | 92.88 (1.76) | 97.78 (0.04) | 92,99 (6.50) | Buildings | 4 | 382 | 42.01 (10.72) | 19.04 (5.30) | 36.70 (7.27) | 61.52 (13.30) | 67.86 (24.93) | 80.08 (9.07) | 20.37 (0.79) | 83.66 (6.88) | Stone | 3 | 90 | 96.89 (5.87) | 87.00 (4.84) | 96.89 (2.41) | 71.44 (25.08) | 93.81 (20.70) | 97.97 (10.17) | 74.89 (1.49) | 98.67 (0.93) | OA | — | — | 60.60 (2.00) | 54.87 (1.63) | 74.04 (1.37) | 71.88 (2.25) | 71.00 (2.97) | 81.84 (2.88) | 86.72 (5.32) | 89.07 (1.17) | AA | — | — | 57.46 (2.63) | 58.02 (2.14) | 74.82 (2.74) | 74.13 (3.18) | 74.88 (5.28) | 78.14 (3.00) | 84.91 (4.79) | 87.57 (1.32) | Kappa | — | — | 54.59 (2.16) | 48.47 (1.86) | 70.12 (1.52) | 67.88 (2.52) | 66.24 (3.70) | 79.29 (3.28) | 84.77 (6.11) | 91.21 (0.84) |
|
|
|