递归滤波与KNN的高光谱遥感图像分类方法
涂兵, 张晓飞, 张国云, 王锦萍, 周瑶

Hyperspectral image classification via recursive filtering and KNN
Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU
表2 Indian Pines高光谱图像不同算法分类精度(1%训练样本)
Tab.2 Indian Pines data set classification accuracy of different algorithms (1% of training samples)
指标 类别 训练样
本/个
测试样
本/个
SVM SRC JSRC EMP EPF IFRF LMLL RF-KNN
CA Alfalfa 3 43 72.25
(5.43)
63.26
(18.20)
92.56
(9.21)
87.44
(6.41)
72.42
(30.15)
88.35
(31.74)
95.35
(0.00)
95.35
(0.00)
Corn-N 14 1 414 47.63
(7.37)
40.07
(5.91)
69.99
(6.50)
57.39
(4.59)
61.20
(8.91)
83.17
(8.34)
69.12
(0.42)
83.97
(10.41)
Corn-M 8 822 55.60
(15.51)
31.33
(6.92)
55.28
(8.60)
63.64
(7.29)
73.96
(18.37)
71.08
(10.79)
44.09
(0.11)
74.67
(14.06)
Corn 3 234 35.98
(11.21)
25.37
(8.55)
45.04
(15.61)
29.79
(9.89)
59.62
(33.29)
70.28
(12.62)
33.42
(0.19)
92.22
(8.31)
Grass-M 6 477 74.25
(12.10)
63.59
(10.07)
70.23
(26.81)
77.04
(9.38)
90.54
(12.56)
85.61
(9.82)
69.18
(0.00)
89.48
(3.16)
Grass-T 7 723 76.13
(6.57)
77.25
(8.63)
85.48
(3.41)
86.07
(13.92)
74.85
(6.53)
90.66
(5.52)
98.76
(0.00)
97.10
(1.64)
Grass-P 3 25 30.57
(15.22)
89.04
(5.76)
92.00
(12.33)
90.80
(9.25)
81.41
(30.42)
52.28
(25.97)
96.00
(0.00)
100.00
(0.00)
Hay-W 5 473 93.09
(5.37)
73.82
(12.02)
84.90
(8.79)
94.82
(3.02)
98.42
(2.99)
100.00
(0.00)
99.79
(0.00)
100.00
(0.00)
Oats 3 17 18.99
(9.95)
68.35
(20.16)
94.12
(10.19)
96.47
(7.44)
48.01
(37.62)
27.79
(20.58)
100.00
(0.00)
96.47
(7.89)
Soybean-N 10 962 53.88
(7.46)
49.04
(8.64)
71.10
(5.46)
69.27
(9.05)
70.51
(15.60)
72.87
(10.46)
73.80
(2.79)
84.30
(4.51)
Soybean-M 24 2 431 59.35
(4.18)
61.04
(4.71)
82.59
(5.06)
77.10
(6.22)
66.08
(9.18)
85.91
(4.45)
79.66
(0.13)
93.58
(4.15)
Soybean-C 6 587 38.95
(8.03)
21.85
(6.44)
48.07
(8.57)
39.93
(7.11)
56.11
(22.14)
70.91
(12.35)
55.54
(0.76)
80.20
(9.34)
Wheat 2 203 84.36
(4.03)
77.38
(11.01)
79.61
(12.27)
95.81
(1.89)
96.16
(3.87)
80.46
(12.73)
99.31
(0.44)
96.75
(2.38)
Woods 13 1 252 84.44
(2.87)
80.95
(6.80)
92.54
(7.27)
87.61
(5.30)
87.10
(5.07)
92.88
(1.76)
97.78
(0.04)
92,99
(6.50)
Buildings 4 382 42.01
(10.72)
19.04
(5.30)
36.70
(7.27)
61.52
(13.30)
67.86
(24.93)
80.08
(9.07)
20.37
(0.79)
83.66
(6.88)
Stone 3 90 96.89
(5.87)
87.00
(4.84)
96.89
(2.41)
71.44
(25.08)
93.81
(20.70)
97.97
(10.17)
74.89
(1.49)
98.67
(0.93)
OA 60.60
(2.00)
54.87
(1.63)
74.04
(1.37)
71.88
(2.25)
71.00
(2.97)
81.84
(2.88)
86.72
(5.32)
89.07
(1.17)
AA 57.46
(2.63)
58.02
(2.14)
74.82
(2.74)
74.13
(3.18)
74.88
(5.28)
78.14
(3.00)
84.91
(4.79)
87.57
(1.32)
Kappa 54.59
(2.16)
48.47
(1.86)
70.12
(1.52)
67.88
(2.52)
66.24
(3.70)
79.29
(3.28)
84.77
(6.11)
91.21
(0.84)