递归滤波与KNN的高光谱遥感图像分类方法
涂兵, 张晓飞, 张国云, 王锦萍, 周瑶

Hyperspectral image classification via recursive filtering and KNN
Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU
表3 Salinas高光谱图像不同算法分类精度(2%训练样本)
Tab.3 Salinas data set classification accuracy of different algorithms (2% of training samples)
指标 类别 训练样
本/个
测试样
本/个
SVM SRC JSRC EMP EPF IFRF LMLL RF-KNN
CA Weeds_1 40 1 969 100.00
(0.00)
98.36
(0.65)
100.00
(0.00)
99.80
(0.00)
100.00
(0.00)
100.00
(0.00)
100.00
(0.00)
100.00
(0.00)
Weeds_2 73 3 653 97.19
(0.53)
98.52
(0.45)
99.41
(0.67)
99.56
(0.34)
100.00
(0.00)
99.99
(0.02)
100.00
(0.00)
99.86
(0.13)
Fallow 38 1 938 94.60
(1.45)
96.76
(1.21)
99.16
(0.77)
99.54
(0.27)
94.84
(1.61)
99.88
(0.08)
99.69
(0.15)
100.00
(0.00)
Fallow_P 26 1 368 97.63
(1.11)
99.26
(0.33)
88.67
(5.45)
98.30
(1.20)
98.02
(0.56)
97.84
(0.92)
98.26
(2.88)
97.35
(2.34)
Fallow_S 52 2 626 98.55
(0.54)
94.39
(0.68)
84.03
(2.06)
96.77
(0.46)
99.94
(0.05)
99.47
(0.98)
99.06
(0.28)
98.64
(0.89)
Stubble 79 3 880 99.97
(0.05)
99.69
(0.10)
98.20
(1.33)
99.60
(0.38)
99.98
(0.02)
100.00
(0.00)
100.00
(0.00)
99.76
(0.18)
Celery 70 3 509 99.40
(0.31)
99.27
(0.14)
95.10
(2.08)
99.58
(0.09)
99.84
(0.17)
99.81
(0.11)
99.94
(0.00)
99.93
(0.05)
Graps 225 11 046 74.60
(1.74)
73.62
(1.49)
98.47
(0.23)
96.38
(0.91)
84.10
(4.04)
99.64
(0.14)
92.72
(0.06)
99.87
(0.19)
Soil 124 6 079 99.62
(0.03)
97.89
(0.93)
99.99
(0.01)
99.84
(0.23)
99.18
(0.32)
99.92
(0.12)
100.00
(0.00)
100.00
(0.00)
Corn 21 3 257 79.07
(5.21)
78.13
(3.72)
89.60
(3.36)
93.38
(1.17)
99.21
(0.83)
99.64
(0.42)
89.72
(1.99)
98.66
(0.73)
Lettuce_4wk 21 1 047 86.93
(4.99)
96.58
(2.71)
88.83
(4.86)
96.85
(1.53)
96.97
(1.27)
99.20
(0.30)
95.52
(0.77)
97.06
(2.52)
Lettuce_5wk 38 1 889 97.96
(0.49)
99.72
(0.58)
94.55
(0.99)
99.52
(0.98)
99.46
(0.63)
98.82
(1.22)
100.00
(0.00)
99.68
(0.40)
Lettuce_6wk 18 898 98.47
(0.85)
97.34
(0.43)
83.78
(5.46)
98.57
(1.17)
98.58
(1.62)
99.01
(1.22)
97.16
(0.13)
91.76
(8.28)
Lettuce_7wk 20 1 050 86.93
(4.81)
92.69
(2.17)
79.62
(5.57)
96.13
(1.75)
98.71
(0.53)
98.16
(1.25)
97.52
(0.04)
98.84
(0.66)
Vinyard_U 140 7 128 66.51
(5.39)
61.41
(1.96)
97.39
(0.47)
94.23
(1.16)
91.82
(2.37)
99.88
(0.16)
68.43
(1.31)
99.01
(0.44)
Vinyard_T 36 1 771 96.88
(2.12)
95.57
(2.75)
99.64
(0.18)
99.31
(0.39)
99.75
(0.44)
99.97
(0.05)
97.33
(0.48)
100.00
(0.00)
OA 87.57
(1.08)
86.69
(0.54)
95.98
(0.53)
97.53
(0.20)
94.78
(1.23)
99.42
(0.10)
93.23
(0.19)
99.46
(0.12)
AA 92.14
(0.85)
92.45
(0.54)
93.53
(1.09)
97.96
(0.25)
97.53
(0.32)
99.15
(0.10)
95.95
(0.21)
99.29
(0.14)
Kappa 86.14
(1.19)
85.17
(0.61)
95.53
(0.59)
97.25
(0.22)
94.17
(1.38)
99.62
(0.11)
92.44
(0.21)
98.78
(0.54)