国土资源遥感, 2019, 31(1): 33-41 doi: 10.6046/gtzyyg.2019.01.05

技术方法

基于波段选择与学习字典的高光谱图像异常探测

侯增福1, 刘镕源2, 闫柏琨2, 谭琨,1

1.中国矿业大学国土环境与灾害监测国家测绘地理信息局重点实验室,徐州 221116

2.中国自然资源航空物探遥感中心,北京 100083

Hyperspectral imagery anomaly detection based on band selection and learning dictionary

HOU Zengfu1, LIU Rongyuan2, YAN Bokun2, TAN Kun,1

1.Key Laboratory for Land Environment and Disaster Monitoring of NASG,China University of Mining and Technology, Xuzhou 221116,China

2.China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China

通讯作者: 谭 琨(1981-),男,教授,主要从事遥感信息处理和高光谱遥感研究。Email:tankuncu@gmail.com

责任编辑: 陈理

收稿日期: 2017-09-25   修回日期: 2017-12-6   网络出版日期: 2019-03-15

基金资助: 中国地质调查局地质调查项目“天山—北山重要成矿区带遥感调查”.  DD20160068
徐州市科技基金项目共同资助.  KC16SS092

Received: 2017-09-25   Revised: 2017-12-6   Online: 2019-03-15

作者简介 About authors

侯增福(1991-),男,硕士研究生,主要从事高光谱目标检测和异常探测方面的研究。Email:zephyrhou@126.com。 。

摘要

针对高光谱影像数据中存在大量冗余,传统异常探测算法应用高光谱所有波段进行探测计算量巨大的问题,提出一种基于波段相似性线性预测与学习字典的异常探测算法。该算法首先通过对波段的相似性进行线性预测,找到最不相似的波段子集; 然后,利用学习字典算法获得能够表征图像背景信息的背景字典,并通过低秩分解的算法将影像分解为低秩矩阵与稀疏矩阵; 最后,使用经典RXD(Reed-X detector)探测算法对稀疏影像进行异常探测。实验结果表明,该算法可以在减少计算代价、保持波段原始信息不被破坏的同时,能够较好地实现了高光谱影像的异常探测。

关键词: 高光谱 ; 波段相似性 ; 线性预测 ; 学习字典 ; 异常探测 ; 低秩分解 ; 稀疏

Abstract

With the large quantities of redundant information in the hyperspectral imagery, the traditional anomaly detection algorithm using the overall hyperspectral spectrum should consume a larger amount of computing time. Based on the linear prediction and learning dictionary, the authors put forward a novel algorithm. Compared with other low rank representation methods, the linear prediction method with the similarity of the band is utilized to find the least similar band subsets, and then the learning dictionary is implemented to obtain the learning dictionary which can represent the background information of the imagery. In addition, the imagery is divided into low rank matrix and sparse matrix via the low rank and decomposition. Finally, the traditional RXD (Reed-X detector) detection algorithm is utilized to detect the sparse image anomaly. Compared with other methods, the proposed method performs better with lower computational cost. Experimental results demonstrate that the selection of some bands including original information can achieve a good performance without corrupting the original information. It is a fine technique to apply to the hyperspectral imagery anomaly detection.

Keywords: hyperspectral ; band similarity ; linear prediction ; learning dictionary ; anomaly detection ; low rank decomposition ; sparse

PDF (4868KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

侯增福, 刘镕源, 闫柏琨, 谭琨. 基于波段选择与学习字典的高光谱图像异常探测. 国土资源遥感[J], 2019, 31(1): 33-41 doi:10.6046/gtzyyg.2019.01.05

HOU Zengfu, LIU Rongyuan, YAN Bokun, TAN Kun. Hyperspectral imagery anomaly detection based on band selection and learning dictionary. REMOTE SENSING FOR LAND & RESOURCES[J], 2019, 31(1): 33-41 doi:10.6046/gtzyyg.2019.01.05

0 引言

高光谱遥感影像不同于全色和多光谱遥感影像,具有光谱分辨率高、图谱合一的特点,在地物目标探测领域具有独特的优势,可广泛应用于环境监测和军事侦察等领域,然而在实际应用中研究者往往很难获得足够的先验知识来表征目标类别的统计信息,因此在没有可用先验信息辅助的情况下完成异常目标的探测,成为了近年来高光谱遥感影像目标探测领域的研究重点[1]

在高光谱影像中,异常像元的光谱往往不同于周围背景像元的光谱信息,这就为异常像元能被探测出来创造了条件。由Reed和Yu在1990年发展起来的RXD(Reed-X detector)算法[2],通过计算待探测像元与背景的马氏距离来完成异常探测,该算法选取整幅影像作为背景信息,故又称为全局RX(global RX,GRX),由于使用全图均值和协方差来估计背景均值与协方差矩阵会影响探测精度,故对此改进的使用局部计算代替全局计算的RX又称之为局部RX(local RX,LRX)[3,4,5]。然而在真实高光谱影像中,背景信息复杂,使用估计的协方差与均值向量来表示背景信息并不准确。基于此提出的一些改进算法,如权重RXD(weighted-RXD,W-RXD)算法[6]和基于线性滤波的RXD(linear filter-based RXD,LF-RXD)算法[6],这2种算法均旨在通过提高背景信息的估计来提高影像中异常被探测出的概率。一些基于核理论的探测算法,如较为经典的非线性核心RX探测(Kernel RX)算法[7],相比于传统的探测算法[8]在异常探测中获得了较好的探测效果。

近年来,基于信号稀疏表示的算法也被应用于高光谱图像目标探测问题上[9]。然而这种算法仅仅考虑了影像的光谱信息,并没有顾及空间信息,故将其应用于异常探测中,往往难以取得令人满意的效果[1]。一种基于协同表示的异常探测算法[10](collaborative-representation-based detector,CRD)认为每一个背景像元都可以被其空间临域像元近似表示,而异常像元则不能,并在应用中取得了不错的探测效果。不同于信号稀疏表示的算法,赵锐等[11]通过在异常探测器的背景信息构建中引入鲁棒性分析方法,提出了一种在核特征空间中具有鲁棒性的异常探测算法; 张乐飞等[12]基于张量数据模型和张量代数运算,针对遥感数据多维或高维的特点提出了一种基于张量学习机的遥感影像目标探测算法; 彭波等[13]基于Cholesky分解,将高维矩阵的求逆运算转换为求解下三角线性系统,提出了基于Cholesky分解的逐像元实时高光谱异常探测算法。

目前,一些关于低秩分解的算法也被应用于高光谱异常探测中,如较为经典的鲁棒性主成分分析(robust principal component analysis,RPCA)算法[14]被应用于高光谱图像的异常探测中[15],其中影像部分仅仅为单子空间表示,并没有考虑到高光谱影像中较为复杂的背景地物。针对该情况提出的低秩表示(low-rank representation,LRR)模型[16],将低秩矩阵表示为多个子空间的线性组合。然而这种算法在使用时将自身作为字典,对应不同高光谱影像,最优参数往往不同,这是一个非常明显的缺陷。Xu等[9]首次将LRR模型引入到高光谱影像的异常探测中,提出了基于低秩和稀疏表示(low-rank and sparse representation,LRaSR)的异常探测算法。另一种基于低秩表示与学习字典(low-rank representation and learned dictionary,LRRaLD)的算法[17]在LRR模型的基础之上引入了仅包含背景光谱信息的学习字典,实现了高光谱背景与异常的有效分离,从而提高了算法的鲁棒性。

然而,由于高光谱本身数据的冗余性,使用上述算法进行异常探测时,往往需要较大的计算代价,如何在保留最大有用信息的同时,减少波段数量,从而达到减小计算代价的目的也就成为了研究的热点。基于此产生的数据降维算法可概括为2类: 特征提取[18,19,20]和波段选择。近些年来,波段选择算法广泛应用于遥感影像的分类研究中,并取得了不错的分类效果,如: 基于聚类分析的自组织特征映射神经网络(self-organizing feature map,SOM)[21,22]、流形学习应用于高光谱遥感影像[23]和最佳分形波段选择模型[24]。目前较为流行的蚁群优化算法也已经被应用于高光谱图像的降维中[25,26,27,28]

在考虑到计算的复杂度和时间效率等综合因素后,本文引入了一种基于波段相似尺度的线性预测(linear prediction and band similarity metric,LPaBS)算法[29],对原始影像进行预处理,即在原始波段特征空间进行选择,找到波段差异性最大的波段,从而形成原空间的一个子集,在最大程度上保留了波段的原始信息,同时降低了维度; 然后对选择的数据子集进行低秩表示与字典学习,并使用传统经典RXD算法进行异常探测,旨在减少计算代价的同时提高探测精度,较好地实现高光谱影像的异常探测。

1 算法研究

1.1 波段选择

高光谱遥感影像所具有的大量光谱波段为更加精细的地物分类与异常探测提供了极其丰富的信息,随着波段数的增多,其光谱特征组合方式更是以指数形式增长,导致了信息的冗余和数据处理复杂性的提高。分类器和探测器的性能在很大程度上依赖于数据降维的特征提取结果,依赖于这些特征是否能够精确地描述对象的特征[30]。本文所引入的LPaBS算法,通过在原始波段特征空间进行选择,找到波段差异性最大的波段,从而形成原空间的一个子集。

为了在高光谱影像中选出最具代表性的波段子集,需要某种尺度来衡量波段间的相似程度,常用方法有JM距离和空间相关性等,本文基于LPaBS算法选出差异性最大的波段 A1A2作为初始子集 Ø,并通过 Ø线性表示出其他波段,再继续通过基于LPaBS算法不断更新波段子集 Ø,直到达到所要求的波段数。该方法中有2个初始参数,分别为初始波段对 Ø和波段数。假设原始影像集共用 N个波段,基于LPaBS法则[29]为: ①寻找初始波段对 B1B2,初始子集 Ø={B1,B2}; ②根据评判标准选出波段 B3,并通过 Ø=ØBi升级子集 Ø; ③继续步骤②,当子集 Ø满足要求时停止。初始波段对的选择算法流程为: ①随机选出波段 A1,并将其余 N-1个波段投影到 A1的正交子空间上,找出最大投影波段记为 A2; ②将其他的 N-1个波段投影到 A2的正交子空间上,找到该投影空间上最大投影波段并记为 A3; ③若 A3= A1,则认为 A1A2是包含最多信息的波段对,停止循环,并将其作为初始波段对 Ø,否则进入步骤④; ④对于波段 Ai,继续步骤②和③,直到 Ai-1= Ai+1,则将 Ai-1Ai作为初始波段对。关于评判波段相似性标准,假设当前波段子集 Ø={B1,B2},通过波段 B1B2线性预测波段 B',即

B'=a0+a1B1+a2B2
a=(a0,a1,a2)T=(XTX)-1XTy

式中: a为参数向量,可以最小化线性预测误差; X为一个 N×3维矩阵,第1列元素全为1,第2列包含波段 B1中所有像元,第3列包含波段 B2中所有像元; y为一个包含波段 B中所有像元的 N×1维列向量; 波段 B'为对波段 B的线性预测值,通过最小二乘算法求解,即

E=B-B'2

式中 E为预测波段误差。通过计算所有波段与 B'之间的 E,并找出最大误差对应的波段 B3, B3即为所求波段。

1.2 低秩与学习字典

高光谱数据存在一个低维线性子空间,通过寻找该空间来实现对高光谱数据的降维处理,如经典的主成分分析(principal component analysis,PCA)算法,然而当高光谱数据中存在较大噪声或异常时,则不能取得理想效果[31]。有学者提出了RPCA[14]的算法,基于影像矩阵源于一个子空间的假设,将图像数据分解为低秩部分与稀疏部分[16],即

Y=L+S

式中: Y,L,SRb×p, p为像元个数, b为波段数; L表示低秩矩阵; S表示稀疏矩阵。

不同于RPCA,假设LRR是基于高光谱数据矩阵由多个子空间构成,即

Y=DZ+S

式中: DRb×m表示字典, m为字典原子个数; ZRm×p为系数矩阵; S为包含异常值的稀疏矩阵。由于 rank(DZ)rank(Z)故公式(5)的求解等价于

minZ,Erank(Z)+βS2,1s.t.Y=DZ+S

式中 ·2,1表示 l2,1范数,为矩阵每列的 l2范数之和; β为低秩矩阵与稀疏矩阵的权衡因子。在解决上述公式(6)非凸函数问题时,通常使用优化问题解决,即

minZ,EZ*+βS2,1s.t.Y=DZ+S

式中 ·*表示核范数,为奇异值之和。为了解决上述凸优化问题引入增广拉格朗日乘子法,公式(7)可表示为

minZ,E,JJ*+βS2,1s.t.Y=DZ+S,Z=J

公式(8)的增广拉格朗日函数为[16,17]

L=J*+βS2,1+tr[Y1T(Y-DZ-S)]+tr[Y2T(Z-J)]+μ2(Y-DZ-SF2+Z-JF2)

式中: Y1Y2分别为拉格朗日乘子; μ为惩罚系数; ·F2表示F范数的平方。

在解决问题的过程中[16,17],字典起到了很关键的作用,初始字典选取的好坏决定了字典收敛程度与收敛速度,在以往的研究中有些学者提出了使用数据本身作为字典的算法,在这种情况下平衡参数 β起到了决定性的作用。若参数过小,探测率不高; 若参数过大,虚警率提高,针对这些问题有学者提出使用学习字典算法,这样在很好地解决平衡参数问题的同时提高了探测率,字典学习[17]的过程如下:

1)输入: 数据矩阵 Y和字典原子个数 m

2)初始化: m=200, γ=0.01, μ=10, ε=10-6, D为归一化随机正值。

步骤1: 从高光谱影像中随机选择 m个像元。

步骤2: 进行稀疏编码,其公式为

Z˙=argminYi-DZi2+γZi1,i=1,2,,m

步骤3: 升级字典,其公式为

D(n+1)=D(n)-μi=1m(D(n)Zi-Yi)ZiT

步骤4: 字典 D归一化处理。

步骤5: μ0.998μ

步骤6: 检查收敛条件 D(n+1)-D(n)<ε是否成立,如果不成立返回步骤1,否则输出。

3)输出: 学习字典 D

1.3 算法流程

提出的异常探测算法流程如图1所示,其主要过程为: ①使用线性预测法则对高光谱遥感影像进行波段选择,获得最终的高光谱波段子集; ②将高光谱波段子集转换为二维图像数据; ③利用字典学习过程进行字典学习,获得 D; ④利用公式(9)将二维数据矩阵分解为 LE; ⑤利用RXD算法对 E进行异常探测,获得最终探测结果。

图1

图1   算法流程

Fig.1   Framework of the proposed method


2 实验结果

为了对该算法进行验证,使用了4幅高光谱影像进行验证,其中1幅基于HyMap数据的模拟数据和3幅Hyperion,HYDICE,Hyspex真实高光谱遥感影像数据。

2.1 模拟数据

为了更好地验证本文算法效果,首先使用了1幅基于HyMap机载高光谱成像仪的模拟数据,该影像为2006年6月拍摄于美国马萨诸塞州区域,影像大小为280像元×800像元,如图2(a)。

图2

图2   HyMap数据集

Fig.2   HyMap data set


该影像含有126个波段,去除水汽吸收波段后余121个波段,实验中截取影像左侧中间大小150像元×150像元区域合成模拟数据,如图2(b),选择红色棉布光谱作为异常光谱。基于线性混合模型,使用异常点埋入的方法生成模拟数据,其表达式为

z=ft+(1-f)b

式中: z为合成异常数据; f为丰度分数; t为异常光谱; b为背景光谱。采用埋点的方法随机生成25个异常值,其中丰富分数为从0.051之间以等差数列形式生成25个丰度值。

为了评估本文提出的基于波段相似性尺度线性预测的低秩表示与学习字典(linear prediction and band similarity metric and low-rank representation and learned dictionary, LPaBS-LRRaLD)算法的优越性,分别与GRX,LRX,基于马氏距离的非监督最近邻规则子空间(unsupervised nearest regularized subspace with Mahalanobis distance,UNRS-MD)[32]与LRRaLD等算法进行对比分析。

首先通过基于HyMap数据合成的模拟数据来证明提出算法的可行性,模拟数据为121个波段,通过LPaBS 算法选出具有代表性的80个波段。各种算法异常探测结果及对应的接收者操作特性曲线(receiver operating characteristic,ROC)如图3所示,表1列出了每种算法的ROC曲线下面积(area under ROC curve,AUC)与运行时间2个定量评价指标。

图3

图3   HyMap模拟数据探测结果及ROC曲线

Fig.3   Detection results and ROC curves of HyMap simulation data set


表1   HyMap模拟数据AUC与耗时性比较

Tab.1  Comparison of AUC and execution time using HyMap simulation data

指标GRXLRXUNRS-MDLRRaLDLPaBS-
LRRaLD
AUC0.748 350.832 270.905 540.933 740.937 00
时间/s0.538100.000165.90060.30049.180

新窗口打开| 下载CSV


图3表1可以看出,使用LRRaLD和LPaBS-LRRaLD算法能够获得较好的探测效果,但是LPaBS-LRRaLD算法在探测精度与运行时间上都优于LRRaLD算法。

2.2 真实数据

2.2.1 HYDICE 数据

Urban数据是由HYDICE机载高光谱成像仪于城市上空拍摄而得到的空间分辨率近1 m的高光谱遥感影像,整幅影像大小为307像元×307像元,包含210个波段,去除低信噪比与水汽吸收波段后剩余174个波段,截取整幅影像右上角80像元×100像元的子块与其对应的真实异常地物如图4所示。

图4

图4   HYDICE数据集

Fig.4   HYDICE data set


为了利用HYDICE高光谱成像仪获取的Urban数据证明本文提出算法的可行性,首先使用 LPaBS 算法选出具有代表性的100个波段,再采用LRRaLD算法进行异常探测。各种不同算法的异常探测结果及其对应的ROC曲线如图5所示,表2列出了各种算法的AUC和运行时间。

图5

图5   HYDICE数据集探测结果及ROC曲线

Fig.5   Detection results and ROC curves of HYDICE data set


表2   HYDICE数据集AUC与耗时性比较

Tab.2  Comparison of AUC and execution time using HYDICE data set

指标GRXLRXUNRS-MDLRRaLDLPaBS-
LRRaLD
AUC0.987 230.949 270.973 190.997 270.997 52
时间/s0.178 161.440 098.380 085.370 056.140 0

新窗口打开| 下载CSV


通过图5可以看出,在各种算法中,使用LRRaLD和LPaBS-LRRaLD算法能够获得较好的探测效果。由表2数据可知,GRX算法运行时间最短,但是探测精度明显低于LRRaLD和LPaBS-LRRaLD算法,LPaBS-LRRaLD算法在探测精度与运行时间上明显优于其他算法。

2.2.2 Hyperion 数据

Hyperion遥感影像数据含有242个波段,光谱分辨率为10 nm ,波长范围为3572 576 nm。实验使用的影像数据采集于2008年,影像中主要包括美国印第安纳州的农业区。去除低信噪比与未定标波段后余149个波段,在实验中使用含有真实异常数据的150像元×150像元大小的子区域(如图6所示)完成实验,影像中异常值主要为储物仓库和屋顶。同样,为了验证本文算法的有效性,首先基于LPaBS 算法选出具有代表性的100个波段,然后使用学习字典并利用增广拉格朗日公式求解进行异常探测,各种不同算法的探测结果及其对应的ROC曲线如图7所示,每种算法的AUC与运行时间如表3所示。

图6

图6   Hyperion数据集

Fig.6   Hyperion data set


图7

图7   Hyperion数据集探测结果及ROC曲线

Fig.7   Detection results and ROC curves of Hyperion data set


表3   Hyperion数据集AUC与耗时性比较

Tab.3  Comparison of AUC and execution time using Hyperion data set

指标GRXLRXUNRS-MDLRRaLDLPaBS-
LRRaLD
AUC0.997 820.730 530.999 620.999 600.999 83
时间/s0.331 6176.50276.60110.6083.58

新窗口打开| 下载CSV


通过图7可以看出,使用Hyperion数据进行异常探测,除LRX算法外,其他探测算法均具有较高的探测精度,其中LPaBS-LRRaLD算法探测精度最高。由表3数据可知,GRX算法运行时间最短,但是探测精度均低于UNRS-MD,LRRaLD和LPaBS-LRRaLD算法,其中LPaBS-LRRaLD算法在探测精度与运行时间上明显优于其他算法。

2.2.3 Hyspex 数据

该数据是由机载Hyspex高光谱成像仪于2014年11月在徐州泉山区附近拍摄的条带影像,包含160个可见光波段与288个短波红外波段,光谱范围为415 2 508 nm,空间分辨率近1 m,实验中截取条带中340像元×260像元区域,其中异常值为彩钢房屋,影像与真实异常地物如图8所示。

图8

图8   Hyspex数据集

Fig.8   Hyspex data set


在Hyspex数据集中,首先基于LPaBS 算法选出具有代表性的45个波段,然后使用学习字典算法进行异常探测。

各种探测算法实验结果及各种算法的ROC曲线如图9所示,每种算法的AUC与运行时间如表4所示。

图9

图9   Hyspex数据集探测结果及ROC曲线

Fig.9   Detection results and ROC curves of Hyspex data set


表4   Hyspex数据集AUC与耗时性比较

Tab.4  Comparison of AUC and execution time using Hyspex data set

指标GRXLRXUNRS-MDLRRaLDLPaBS-
LRRaLD
AUC0.848 510.654 310.692 500.877 180.910 69
时间/s5.3384 4945 500430.5109.5

新窗口打开| 下载CSV


通过图9可以看出,使用Hyspex数据进行异常探测,其中的 LPaBS-LRRaLD算法探测精度明显高于其他算法。由表4数据可知,除GRX算法运行时间最短外,LPaBS-LRRaLD算法在探测精度与运行时间上明显优于其他算法。

2.3 实验小结

通过模拟数据与真实数据实验,可以看出本文提出算法的可行性,对照实验中所使用的RXD算法与最近提出的UNRS-MD和LRRaLD算法都是基于原始数据进行的异常探测,而本文提出算法在降维的同时探测精度得到了提高,尤其是Hyspex数据,波段数从448个减少到45个,很大程度上去除了信息冗余,在减少计算代价的同时探测精度也得到了提高。

3 结论

针对全局高光谱异常,将低秩分解的算法引入到高光谱异常探测中,并通过低秩分解将图像表征为背景低秩矩阵与稀疏矩阵,在求解背景低秩矩阵过程中采用学习字典来提高背景字典的准确性与鲁棒性,同时顾及维数灾难对高光谱影响异常探测的影响。首先,采用基于波段相似性线性预测的算法进行降维,在保持原有波段信息不变性的同时有效地去除数据冗余; 然后,结合学习字典算法在低秩分解过程中提高背景与异常信息可分性的同时,更好地挖掘数据本身的低秩特性,从而达到快速收敛; 最后,使用传统的RXD算法对稀疏矩阵进行异常探测。

实验表明,本文算法与同类算法相比,在高光谱影像异常探测中,在进一步降低计算代价的同时,提高了异常探测率,因此该算法更具有实际应用意义。由于学习字典的随机性,会使得背景字典中存在异常的小概率事件发生,针对这种情况,如何找到完全不存在异常的背景字典来表征背景矩阵,从而使得背景与异常更加有效地分离将是需要进一步研究的问题; 同时也建议尝试其他探测算法对稀疏矩阵进行异常探测,以达到更高精度的探测率。

参考文献

钮宇斌, 王斌 .

基于低秩表示和学习字典的高光谱图像异常探测

[J]. 红外与毫米波学报, 2016,35(6):731-740.

URL     [本文引用: 2]

提出一种基于低秩表示和学习字典的高光谱遥感图像异常探测算法.相对于其它低秩矩阵分解方法如鲁棒主成分分析, 低秩表示方法更为契合高光谱图像的线性混合模型.该算法将低秩表示模型应用到高光谱图像异常探测问题上来, 引入表征背景信息的学习字典, 大大增强了低秩表示模型对初始参数的鲁棒性.仿真和实际高光谱数据的实验结果表明, 所提出的算法有效地提高了异常的探测率, 同时对初始参数具有较好的鲁棒性, 可以作为一种解决高光谱图像异常探测的有效手段.

Niu Y B, Wang B .

Hyperspectral anomaly detection using low-rank representation and learned dictionary

[J]. Journal of Infrared and Millimeter Waves, 2016,35(6):731-740.

[本文引用: 2]

Reed I S, Yu X .

Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution

[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1990,38(10):1760-1770.

DOI:10.1109/29.60107      URL     [本文引用: 1]

A geneeralized constant false alarm rate (CFAR) detection algorithm is developed for detecting the presence of an optical signal of non-zero intensity in J signal-plus-noise bands or channels. For many applications this new algorithm is more flexible and practical than previous ones. If J = 1, the resulting test reduces to the standard normalized matched filter test for finding a signal in clutter of unknown and varying intensity. Both theoretical and computer simulation results show that the SNR improvement gain of this new algorithm using multiple band scenes over the single scene of maximum SNR is always greater than one and in some cases it can be substantial. The database used to simulate this new adaptive CFAR test are actual Landsat image scenes. The present results for optical detection are extendable to radar target detection and to other related detection problems.

Matteoli S, Diani M, Corsini G.

A kurtosis-based test to efficiently detect targets placed in close proximity by means of local covariance-based hyperspectral anomaly detectors [C]//3rd Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS)

.Lisbon:IEEE, 2011: 1-4.

[本文引用: 1]

Molero J M, Garzón E M, García I .

Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data

[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6(2):801-814.

DOI:10.1109/JSTARS.2013.2238609      URL     [本文引用: 1]

Anomaly detection is an important task for hyperspectral data exploitation. A standard approach for anomaly detection in the literature is the method developed by Reed and Xiaoli, also called RX algorithm. A variation of this algorithm consists of applying the same concept to a local sliding window centered around each image pixel. The computational cost is very high for RX algorithm and it strongly increases for its local versions. However, current advances in high performance computing help to reduce the run-time of these algorithms. So, for the standard RX, it is possible to achieve a processing time similar to the data acquisition time and to increase the practical interest for its local versions. In this paper, we discuss several optimizations which exploit different forms of acceleration for these algorithms. First, we explain how the calculation of the correlation matrix and its inverse can be accelerated through optimization techniques based on the properties of these particular matrices and the efficient use of linear algebra libraries. Second, we describe parallel implementations of the RX algorithm, optimized for multicore platforms. These are well-known, inexpensive and widely available high performance computing platforms. The ability to detect anomalies of the global and local versions of RX is explored using a wide set of experiments, using both synthetic and real data, which are used for comparing the optimized versions of the global and local RX algorithms in terms of anomaly detection accuracy and computational efficiency. The synthetic images have been generated under different noise conditions and anomalous features. The two real scenes used in the experiments are a hyperspectral data set collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) system over the World Trade Center (WTC) in New York, five days after the terrorist attacks, and another data set collected by the HYperspectral Digital Image Collection Experiment (HYDICE). Experimental results indicate that the proposed optimizations can significantly improve the performance of the considered algorithms without reducing their anomaly detection accuracy.

Taitano Y P, Geier B A, Bauer K W .

A locally adaptable iterative RX detector

[J].Eurasip Journal on Advances in Signal Processing, 2010(1):1-10.

DOI:10.1155/2010/341908      URL     [本文引用: 1]

p/ pWe present an unsupervised anomaly detection method for hyperspectral imagery (HSI) based on data characteristics inherit in HSI. A locally adaptive technique of iteratively refining the well-known RX detector (LAIRX) is developed. The technique is motivated by the need for better first- and second-order statistic estimation via avoidance of anomaly presence. Overall, experiments show favorable Receiver Operating Characteristic (ROC) curves when compared to a global anomaly detector based upon the Support Vector Data Description (SVDD) algorithm, the conventional RX detector, and decomposed versions of the LAIRX detector. Furthermore, the utilization of parallel and distributed processing allows fast processing time making LAIRX applicable in an operational setting./p

Guo Q, Zhang B, Ran Q , et al.

Weighted-RXD and linear filter-based RXD:Improving background statistics estimation for anomaly detection in hyperspectral imagery

[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6):2351-2366.

DOI:10.1109/JSTARS.2014.2302446      URL     [本文引用: 2]

Anomaly detection is an active topic in hyperspectral imaging, with many practical applications. Reed-Xiaoli detector (RXD), a widely used method for anomaly detection, uses the covariance matrix and mean vector to represent background signals, assuming that the background information adjusts to a multivariate normal distribution. However, in general, real images present very complex backgrounds. As a result, in many situations, the background information cannot be properly modeled. An important reason is that that background samples often contain also anomalous pixels and noise, which lead to a high false alarm rate. Therefore, the characterization of the background is essential for successful anomaly detection. In this paper, we develop two novel approaches: weighted-RXD (W-RXD) and linear filter-based RXD (LF-RXD) aimed at improving background in RXD-based anomaly detection. By reducing the weight of the anomalous pixels or noise signals and increasing the weight of the background samples, W-RXD can provide better estimations of the background information. In turn, LF-RXD uses the probability of each pixel as background to filter wrong anomalous or noisy instances. Our experimental results, intended to analyze the performance of the newly developed anomaly detectors, indicate that the proposed approaches achieve good performance when compared with other classic approaches for anomaly detection in the literature.

Kwon H, Nasrabadi N M .

Kernel RX-algorithm:A nonlinear anomaly detector for hyperspectral imagery

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(2):388-397.

DOI:10.1109/TGRS.2004.841487      URL     [本文引用: 1]

We present a nonlinear version of the well-known anomaly detection method referred to as the RX-algorithm. Extending this algorithm to a feature space associated with the original input space via a certain nonlinear mapping function can provide a nonlinear version of the RX-algorithm. This nonlinear RX-algorithm, referred to as the kernel RX-algorithm, is basically intractable mainly due to the high dimensionality of the feature space produced by the nonlinear mapping function. However, in this paper it is shown that the kernel RX-algorithm can easily be implemented by kernelizing the RX-algorithm in the feature space in terms of kernels that implicitly compute dot products in the feature space. Improved performance of the kernel RX-algorithm over the conventional RX-algorithm is shown by testing several hyperspectral imagery for military target and mine detection.

张兵 .

高光谱图像处理与信息提取前沿

[J]. 遥感学报, 2016,20(5):1062-1090.

DOI:10.11834/jrs.20166179      URL     [本文引用: 1]

高光谱遥感是对地观测的重要手段,高光谱图像处理与信息提取技术则是高光谱遥感领域的核心研究内容之一。本文简要介绍了高光谱遥感的主要特点,系统梳理了高光谱图像处理与信息提取面临的关键问题和主要研究方向,在此基础上,从噪声评估与数据降维方法、混合像元分解方法、图像分类方法、目标探测与异常探测方法等4个方面对高光谱图像处理与信息提取的理论发展过程和最新前沿进展进行了综述。另外,还对高光谱图像处理与信息提取中的高性能处理技术进行了总结和分析。未来,伴随着智能化信息分析和高性能硬件处理技术发展,高光谱遥感卫星系统也将步入智能化时代。针对这一趋势,本文指出高光谱图像处理与信息提取方法要注重多学科交叉,充分利用机器学习、人工智能等领域的新成果;要重视软硬件结合,发展高光谱图像高性能实时处理技术;要紧密结合应用需求,发挥高光谱遥感的优势和特点,发展新理论和新方法。

Zhang B .

Advancement of hyperspectral image processing and information extraction

[J]. Journal of Remote Sensing, 2016,20(5):1062-1090.

[本文引用: 1]

Xu Y, Wu Z, Li J .

Anomaly detection in hyperspectral images based on low-rank and sparse representation

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(4):1990-2000.

DOI:10.1109/TGRS.2015.2493201      URL     [本文引用: 2]

A novel method for anomaly detection in hyperspectral images (HSIs) is proposed based on low-rank and sparse representation. The proposed method is based on the separation of the background and the anomalies in the observed data. Since each pixel in the background can be approximately represented by a background dictionary and the representation coefficients of all pixels form a low-rank matrix, a low-rank representation is used to model the background part. To better characterize each pixel's local representation, a sparsity-inducing regularization term is added to the representation coefficients. Moreover, a dictionary construction strategy is adopted to make the dictionary more stable and discriminative. Then, the anomalies are determined by the response of the residual matrix. An important advantage of the proposed algorithm is that it combines the global and local structure in the HSI. Experimental results have been conducted using both simulated and real data sets. These experiments indicate that our algorithm achieves very promising anomaly detection performance.

Li W, Du Q .

Collaborative representation for hyperspectral anomaly detection

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(3):1463-1474.

DOI:10.1109/TGRS.2014.2343955      URL     [本文引用: 1]

In this paper, collaborative representation is proposed for anomaly detection in hyperspectral imagery. The algorithm is directly based on the concept that each pixel in background can be approximately represented by its spatial neighborhoods, while anomalies cannot. The representation is assumed to be the linear combination of neighboring pixels, and the collaboration of representation is reinforced by l(2)-norm minimization of the representation weight vector. To adjust the contribution of each neighboring pixel, a distance-weighted regularization matrix is included in the optimization problem, which has a simple and closed-form solution. By imposing the sum-to-one constraint to the weight vector, the stability of the solution can be enhanced. The major advantage of the proposed algorithm is the capability of adaptively modeling the background even when anomalous pixels are involved. A kernel extension of the proposed approach is also studied. Experimental results indicate that our proposed detector may outperform the traditional detection methods such as the classic Reed-Xiaoli (RX) algorithm, the kernel RX algorithm, and the state-of-the-art robust principal component analysis based and sparse-representation-based anomaly detectors, with low computational cost.

赵锐, 杜博, 张良培 .

一种基于核特征空间的鲁棒性高光谱异常探测方法

[J]. 光子学报, 2013,42(8):883-890.

URL     [本文引用: 1]

传统高光谱异常探测器的背景统计信息易受异常目标干扰,鲁棒性较差,且难以探测非线性混合的异常目标.针对此问题,运用核特征投影理论,在异常探测器的背景信息构建中引入鲁棒性分析方法,提出了一种在核特征空间中具有鲁棒性的异常探测方法.该方法可以在不需要确定具体的非线性映射函数下,将高光谱数据从低维空间映射到高维特征空间,背景和目标在特征空间中可以用线性模型表示,并在特征空间中构造鲁棒性的探测器.该方法揭示了地物光谱间的高阶特性,可以较好地反映地物分布复杂的目标光谱特性.通过高光谱真实影像和模拟数据的实验证明:1)本文提出的异常探测方法具有更优的受试者工作特征曲线和曲线下面积统计值,目标和背景的分离度更大;2)在核特征空间内,排除异常目标对背景统计信息的干扰,有助于进一步提高探测准确度;3)特征提取可以更好地利用目标和背景的光谱区分性,是异常探测的重要步骤.

Zhao R, Du B, Zhang L P .

An anomaly detection method for hyperspectral imagery in kernel feature space based on robust analysis

[J]. Acta Photonica Sinica, 2013,42(8):883-890.

[本文引用: 1]

张乐飞, 张良培, 陶大程 .

张量分类算法的遥感影像目标探测

[J]. 遥感学报, 2010,14(3):519-533.

URL     Magsci     [本文引用: 1]

提出了一种基于张量学习机的遥感影像目标探测方法.该方法基于张量数据模型和张量代数运算,针对遥感影像数据多维或高维的特点,将基于向量的监督法学习机扩展为基于张量的监督法学习机,然后利用凸函数最优化理论和交互投影迭代法求得张量学习机的最优解.最后分别以高光谱遥感影像和高分辨率遥感影像为例,使用张量学习机进行目标探测.实验表明,与支持向量机等方法相比,本文的方法在保持较高探测成功率的同时更好的抑制了虚警.

Zhang L F, Zhang L P, Tao D C .

Tensor-based learning machine for remotely sensed image target detection

[J]. Journal of Remote Sensing, 2010,14(3):519-533.

Magsci     [本文引用: 1]

彭波, 张立福, 张鹏 , .

Cholesky分解的逐像元实时高光谱异常探测

[J]. 遥感学报, 2017,21(5):739-748.

URL     [本文引用: 1]

传统的实时异常探测算法需对高维的背景样本统计矩阵进行求逆运算,数值稳定性差、时间复杂度高。而基于Cholesky分解,将高维矩阵的求逆运算转换为求解下三角线性系统,采用Cholesky分解因子的一阶修正方法快速更新背景统计信息,降低逐像元实时处理的时间复杂度并且保持数值稳定性。由于算法仅涉及下三角矩阵的更新过程,压缩了数据存储空间,适用于机载或星上实时处理。采用3维接收器曲线(3D-ROC)以及计算机实际处理时间对实验结果进行定量化分析,结果表明,该算法在不降低异常探测精度的同时,对当前时刻像元的实时处理时间约缩短为基于QR分解算法的0.4%—0.65%,或减少至基于Woodbury矩阵引理算法的27%—33%,有效提高实时高光谱异常探测器的计算性能,并且保持处理过程中的数值稳定性。

Peng B, Zhang L F, Zhang P , et al.

A real-time sample-wise hyperspectral anomaly detection algorithm using Cholesky decomposition

[J]. Journal of Remote Sensing, 2017,21(5):739-748.

[本文引用: 1]

Huang S Y, Yeh Y R, Eguchi S .

Robust kernel principal component analysis

[J]. Neural Computation. 2009,21(11):3179-3213.

DOI:10.1162/neco.2009.02-08-706      URL     PMID:19686071      [本文引用: 2]

This letter discusses the robustness issue of kernel principal component analysis. A class of new robust procedures is proposed based on eigenvalue decomposition of weighted covariance. The proposed procedures will place less weight on deviant patterns and thus be more resistant to data contamination and model deviation. Theoretical influence functions are derived, and numerical examples are presented as well. Both theoretical and numerical results indicate that the proposed robust method outperforms the conventional approach in the sense of being less sensitive to outliers. Our robust method and results also apply to functional principal component analysis.

Chen S Y, Yang S M, Kalpakis K, et al.

Low-rank decomposition-based anomaly detection

[C]//Proceedings of the SPIE Defense,Security,and Sensing. 2013,8743.

[本文引用: 1]

Liu G, Lin Z, Yan S , et al.

Robust recovery of subspace structures by low-rank representation

[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):171-184.

DOI:10.1109/TPAMI.2012.88      URL     PMID:22487984      [本文引用: 4]

In this paper, we address the subspace clustering problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to cluster the samples into their respective subspaces and remove possible outliers as well. To this end, we propose a novel objective function named Low-Rank Representation (LRR), which seeks the lowest rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the data is clean, we prove that LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for data corrupted by arbitrary sparse errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace clustering and error correction in an efficient and effective way.

Niu Y, Wang B.

A novel hyperspectral anomaly detector based on low-rank representation and learned dictionary [C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS)

.Beijing:IEEE, 2016.

[本文引用: 4]

Honeine P .

Online kernel principal component analysis:A reduced-order model

[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(9):1814-1826.

DOI:10.1109/TPAMI.2011.270      URL     PMID:22201059      [本文引用: 1]

Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-PCA. To this end, we examine a kernel-based version of Oja's rule, initially put forward to extract a linear principal axe. As with most kernel-based machines, the model order equals the number of available observations. To provide an online scheme, we propose to control the model order. We discuss theoretical results, such as an upper bound on the error of approximating the principal functions with the reduced-order model. We derive a recursive algorithm to discover the first principal axis, and extend it to multiple axes. Experimental results demonstrate the effectiveness of the proposed approach, both on synthetic data set and on images of handwritten digits, with comparison to classical kernel-PCA and iterative kernel-PCA.

Wang J, Chang C I .

Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis

[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(6):1586-1600.

DOI:10.1109/TGRS.2005.863297      URL     [本文引用: 1]

In hyperspectral image analysis, the principal components analysis (PCA) and the maximum noise fraction (MNF) are most commonly used techniques for dimensionality reduction (DR), referred to as PCA-DR and MNF-DR, respectively. The criteria used by the PCA-DR and the MNF-DR are data variance and signal-to-noise ratio (SNR) which are designed to measure data second-order statistics. This paper presents an independent component analysis (ICA) approach to DR, to be called ICA-DR which uses mutual information as a criterion to measure data statistical independency that exceeds second-order statistics. As a result, the ICA-DR can capture information that cannot be retained or preserved by second-order statistics-based DR techniques. In order for the ICA-DR to perform effectively, the virtual dimensionality (VD) is introduced to estimate number of dimensions needed to be retained as opposed to the energy percentage that has been used by the PCA-DR and MNF-DR to determine energies contributed by signal sources and noise. Since there is no prioritization among components generated by the ICA-DR due to the use of random initial projection vectors, we further develop criteria and algorithms to measure the significance of information contained in each of ICA-generated components for component prioritization. Finally, a comparative study and analysis is conducted among the three DR techniques, PCA-DR, MNF-DR, and ICA-DR in two applications, endmember extraction and data compression where the proposed ICA-DR has been shown to provide advantages over the PCA-DR and MNF-DR.

Weiland S, Van Belzen F .

Singular value decompositions and low rank approximations of tensors

[J]. IEEE Transactions on Signal Processing, 2010,58(3):1171-1182.

DOI:10.1109/TSP.2009.2034308      URL     [本文引用: 1]

The singular value decomposition is among the most important tools in numerical analysis for solving a wide scope of approximation problems in signal processing, model reduction, system identification and data compression. Nevertheless, there is no straightforward generalization of the algebraic concepts underlying the classical singular values and singular value decompositions to multilinear functions. Motivated by the problem of lower rank approximations of tensors, this paper develops a notion of singular values for arbitrary multilinear mappings. We provide bounds on the error between a tensor and its optimal lower rank approximation. Conceptual algorithms are proposed to compute singular value decompositions of tensors.

Su M C, Chang H T .

Fast self-organizing feature map algorithm

[J]. IEEE Transactions on Neural Networks, 2000,11(3):721-733.

DOI:10.1109/72.846743      URL     PMID:18249799      [本文引用: 1]

We present an efficient approach to forming feature maps. The method involves three stages. In the first stage, we use the K-means algorithm to select N2 (i.e., the size of the feature map to be formed) cluster centers from a data set. Then a heuristic assignment strategy is employed to organize the N2 selected data points into an N x N neural array so as to form an initial feature map. If the initial map is not good enough, then it will be fine-tuned by the traditional Kohonen self-organizing feature map (SOM) algorithm under a fast cooling regime in the third stage. By our three-stage method, a topologically ordered feature map would be formed very quickly instead of requiring a huge amount of iterations to fine-tune the weights toward the density distribution of the data points, which usually happened in the conventional SOM algorithm. Three data sets are utilized to illustrate the proposed method.

哈斯巴干, 马建文, 李启青 , .

多波段遥感数据的自组织神经网络降维分类研究

[J]. 武汉大学学报(信息科学版), 2004,29(5):461-465.

DOI:10.3321/j.issn:1671-8860.2004.05.019      URL     Magsci     [本文引用: 1]

<p>介绍了基于聚类分析的自组织特征映射神经网络分类方法,神经网络的输出层结构选用了3D结构,可以更好地保持多波段遥感数据中的内在拓扑结构;并选择天津大港地区的ASTER数据中的9个波段作为试验数据,通过对验证点的统计,分类精度达到了94%以上。</p>

Hasi B G, Ma J W, Li Q Q , et al.

Dimension reduction of self-organized neural network classification for multi-band satellite data

[J]. Geomatics and Information Science of Wuhan University. 2004,29(5):461-465.

Magsci     [本文引用: 1]

杜培军, 王小美, 谭琨 , .

利用流形学习进行高光谱遥感影像的降维与特征提取

[J]. 武汉大学学报(信息科学版), 2011,36(2):148-152.

URL     Magsci     [本文引用: 1]

基于最新的非线性降维方法——流形学习的理论,从高光谱遥感数据内在的非线性结构出发,采用全局化的等距映射(Isomap)方法进行降维,取得了优于常用的MNF方法的结果。把光谱角和光谱信息散度与测地距离相结合用于Isomap算法,结果在冗余方差和光谱规范化特征值方面优于采用传统欧氏距离计算邻域的Isomap方法。实验表明,流形学习是一种有效的高光谱遥感数据特征提取方法。

Du P J, Wang X M, Tan K , et al.

Dimensionality reduction and feature extraction from hyperspectral remote sensing imagery based on manifold learning

[J]. Geomatics and Information Science of Wuhan University. 2011,36(2):148-152.

Magsci     [本文引用: 1]

李恒凯, 吴立新, 李发帅 .

面向土地利用分类的HJ-1 CCD影像最佳分形波段选择

[J]. 遥感学报, 2013,17(6):1572-1586.

DOI:10.11834/jrs.20132318      URL     Magsci     [本文引用: 1]

环境一号卫星(HJ-1)CCD影像光谱波段较少,地物之间的准确分类识别有一定困难。采用分形纹理辅助地物分类识别是一种有效方法,而波段选择是提高分类识别精度的关键。本文以江西赣州定南县土地利用分类为例,采用双毯覆盖模型对HJ卫星CCD影像6类典型地物的波谱分形特征进行了分析,利用不同地物在不同波段上的分形区分度差异构建了最佳分形波段选择模型,并利用该模型挑选出最佳分形波段来辅助土地利用分类,最后对分类结果进行检验。结果表明:最佳分形波段选择模型能够综合权衡不同地物在不同波段上的分形区分度差异,利用挑选出来的最佳分形波段来辅助分类,其分类总体精度相对于原始影像分类提高了11.77%,相对于第1主成分分形辅助下的分类提高了1.56%。

Li H K, Wu L X, Li F S ,

Optimal fractal band selection on HJ-1 CCD image for land use classification

[J]. Journal of Remote Sensing, 2013,17(6):1572-1586.

Magsci     [本文引用: 1]

Lu X Q, Li J L.

A remote sensing images feature selection approach based on ant colony algorithm [C]//The 2nd International Conference on Industrial Mechatronics and Automation

Wuhan:IEEE, 2010.

[本文引用: 1]

Zhou S, Zhang J P, Su B K.

Feature selection and classification based on ant colony algorithm for hyperspectral remote sensing images [C]//The 2nd International Congress on Image and Signal Processing

.Tianjin:IEEE, 2009.

[本文引用: 1]

叶志伟, 郑肇葆, 万幼川 , .

基于蚁群优化的特征选择新方法

[J]. 武汉大学学报(信息科学版), 2007,32(12):1127-1130.

DOI:10.3969/j.issn.1671-8860.2007.12.010      URL     Magsci     [本文引用: 1]

利用蚁群优化算法解决特征选择问题,以获得能代表问题空间的较优特征子集,并能降低分类系统的搜索空间。以航空纹理影像的特征选择和分类问题为例,利用主分量变换和蚁群优化算法分别对原始纹理影像特征集合进行特征提取、选择和分类。结果表明,本文方法不仅能够降低图像特征空间维数,减少图像分类的工作量,而且还可以提高分类识别的正确率。

Ye Z W, Zheng Z B, Wan Y C , et al.

A novel approach for feature selection based on ant colony optimization algorithm

[J]. Geomatics and Information Science of Wuhan University, 2007,32(12):1127-1130.

Magsci     [本文引用: 1]

周爽 .

蚁群算法在高光谱图像降维和分类中的应用研究

[D]哈尔滨:哈尔滨工业大学, 2010.

[本文引用: 1]

Zhou S .

Research on the Application of Ant Colony Algorithm in the Dimentionality Reduction and Classification for Hyperspectral Image

[D]Harbin:Harbin Institute of Technology, 2010.

[本文引用: 1]

Tan K, Li E, Du Q, et al.

Hyperspectral image classification using band selection and morphological profile [C]//4th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS)

.Shanghai:IEEE, 2014.

[本文引用: 2]

张兵, 高连如 . 高光谱图像分类与目标探测[M]. 北京: 科学出版社, 2011.

[本文引用: 1]

Zhang B, Gao L R. Hyperspectral Image Classification and Target Detection[M]. Beijing: Science Press, 2011.

[本文引用: 1]

Wold S, Esbensen K, Geladi P .

Principal component analysis

[J]. Chemometrics and Intelligent Laboratory Systems, 1987,2(1-3):37-52.

DOI:10.1016/0169-7439(87)80084-9      URL     [本文引用: 1]

Li W, Du Q.

Unsupervised nearest regularized subspace for anomaly detection in hyperspectral imagery [C]//IEEE International Geoscience and Remote Sensing Symposium(IGARSS)

.Melbourne:IEEE, 2013.

[本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发