卷积神经网络特征在遥感图像配准中的应用
|
叶发茂, 罗威, 苏燕飞, 赵旭青, 肖慧, 闵卫东
|
Application of convolutional neural network feature to remote sensing image registration
|
Famao YE, Wei LUO, Yanfei SU, Xuqing ZHAO, Hui XIAO, Weidong MIN
|
|
表1 不同特征的图像配准精度
|
Tab.1 Image registration accuracy of different features
|
|
特征 | P-A图像 | P-B图像 | P-C图像 | P-D图像 | | | | | | | | | | | | | SIFT | 0.040 8 | 0.040 9 | 64 | 0.092 1 | 0.094 1 | 24 | 0.070 5 | 0.070 6 | 42 | 0.913 4 | 1.015 0 | 7 | | 0.034 2 | 0.034 2 | 72 | 0.079 6 | 0.081 3 | 27 | 0.038 1 | 0.039 0 | 49 | 0.800 2 | 0.820 2 | 8 | | 0.034 2 | 0.034 2 | 72 | 0.079 6 | 0.081 3 | 27 | 0.036 2 | 0.037 1 | 50 | 0.662 2 | 0.839 8 | 11 | | 0.034 2 | 0.034 2 | 72 | 0.079 6 | 0.081 3 | 27 | 0.036 2 | 0.037 1 | 50 | 0.698 7 | 1.077 3 | 10 | | 0.034 2 | 0.034 2 | 72 | 0.079 6 | 0.081 3 | 27 | 0.036 2 | 0.037 1 | 50 | 0.670 0 | 0.714 4 | 10 | | 0.034 2 | 0.034 2 | 72 | 0.079 6 | 0.081 3 | 27 | 0.038 1 | 0.039 0 | 49 | 0.737 1 | 0.758 8 | 7 | | 0.043 1 | 0.043 3 | 56 | 0.109 8 | 0.111 5 | 22 | 0.038 1 | 0.039 0 | 49 | 2.656 5 | 3.116 7 | 3 | | 0.038 0 | 0.038 1 | 65 | 0.094 6 | 0.097 3 | 25 | 0.043 3 | 0.044 4 | 43 | 1.893 5 | 3.635 3 | 4 | | 0.037 7 | 0.037 8 | 71 | 0.079 6 | 0.081 3 | 27 | 0.042 8 | 0.043 8 | 46 | 1.286 7 | 1.311 3 | 5 | | 0.034 2 | 0.034 2 | 72 | 0.079 6 | 0.081 3 | 27 | 0.038 1 | 0.039 0 | 49 | 0.800 2 | 0.820 2 | 8 | | 0.034 2 | 0.034 2 | 72 | 0.079 6 | 0.081 3 | 27 | 0.040 6 | 0.041 5 | 48 | 1.044 4 | 1.339 5 | 7 | | 0.037 9 | 0.038 0 | 70 | 0.079 6 | 0.081 3 | 27 | 0.040 6 | 0.041 5 | 48 | 0.732 0 | 0.762 7 | 8 | | 0.063 8 | 0.065 6 | 18 | 0.263 2 | 0.261 3 | 9 | 0.040 7 | 0.041 6 | 46 | 9.711 4 | 11.32 4 | 3 |
|
|
|