卷积神经网络特征在遥感图像配准中的应用
叶发茂, 罗威, 苏燕飞, 赵旭青, 肖慧, 闵卫东

Application of convolutional neural network feature to remote sensing image registration
Famao YE, Wei LUO, Yanfei SU, Xuqing ZHAO, Hui XIAO, Weidong MIN
表1 不同特征的图像配准精度
Tab.1 Image registration accuracy of different features
特征 P-A图像 P-B图像 P-C图像 P-D图像
RMSall RMSLOO Nred RMSall RMSLOO Nred RMSall RMSLOO Nred RMSall RMSLOO Nred
SIFT 0.040 8 0.040 9 64 0.092 1 0.094 1 24 0.070 5 0.070 6 42 0.913 4 1.015 0 7
FC7fine-tuning 0.034 2 0.034 2 72 0.079 6 0.081 3 27 0.038 1 0.039 0 49 0.800 2 0.820 2 8
FC6fine-tuning 0.034 2 0.034 2 72 0.079 6 0.081 3 27 0.036 2 0.037 1 50 0.662 2 0.839 8 11
Agg1fine-tuning 0.034 2 0.034 2 72 0.079 6 0.081 3 27 0.036 2 0.037 1 50 0.698 7 1.077 3 10
Agg2fine-tuning 0.034 2 0.034 2 72 0.079 6 0.081 3 27 0.036 2 0.037 1 50 0.670 0 0.714 4 10
Agg3fine-tuning 0.034 2 0.034 2 72 0.079 6 0.081 3 27 0.038 1 0.039 0 49 0.737 1 0.758 8 7
Agg4fine-tuning 0.043 1 0.043 3 56 0.109 8 0.111 5 22 0.038 1 0.039 0 49 2.656 5 3.116 7 3
FC7pre-trained 0.038 0 0.038 1 65 0.094 6 0.097 3 25 0.043 3 0.044 4 43 1.893 5 3.635 3 4
FC6pre-trained 0.037 7 0.037 8 71 0.079 6 0.081 3 27 0.042 8 0.043 8 46 1.286 7 1.311 3 5
Agg1pre-trained 0.034 2 0.034 2 72 0.079 6 0.081 3 27 0.038 1 0.039 0 49 0.800 2 0.820 2 8
Agg2pre-trained 0.034 2 0.034 2 72 0.079 6 0.081 3 27 0.040 6 0.041 5 48 1.044 4 1.339 5 7
Agg3pre-trained 0.037 9 0.038 0 70 0.079 6 0.081 3 27 0.040 6 0.041 5 48 0.732 0 0.762 7 8
Agg4pre-trained 0.063 8 0.065 6 18 0.263 2 0.261 3 9 0.040 7 0.041 6 46 9.711 4 11.32 4 3