空谱特征分层融合的高光谱图像特征提取
|
姚本佐, 何芳
|
Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction
|
Benzuo YAO, Fang HE
|
|
表1 Indian Pines数据库不同算法各类地物的分类精度
|
Tab.1 Classification accuracy of different types of features in Indian Pines dataset by different algorithms(%)
|
|
地物类别 | KNN | PCA | HF-PCA | | 地物类别 | KNN | PCA | HF-PCA | Alfalfa | 80.56 | 80.56 | 97.78 | Oats | 80.00 | 70.00 | 100 | Corn-notill | 46.57 | 45.84 | 84.32 | Soybeans-notill | 61.21 | 60.46 | 87.06 | Corn-mintill | 57.49 | 56.60 | 79.06 | Soybeans-mintill | 66.21 | 64.71 | 90.21 | Corn | 28.00 | 29.33 | 47.20 | Soybeans-clean | 44.40 | 43.16 | 70.05 | Grass/pasture | 78.87 | 78.21 | 87.93 | Wheat | 94.36 | 93.33 | 98.15 | Grass/trees | 94.37 | 94.52 | 97.63 | Woods | 88.02 | 88.69 | 95.97 | Grass/pasture-mowed | 100 | 100 | 97.78 | Buildings-grass-tree-drives | 41.14 | 39.78 | 62.94 | Hay-windrowed | 94.71 | 94.05 | 98.37 | Stone-steel-towers | 85.54 | 85.54 | 92.53 |
|
|
|