基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取
刘文雅, 岳安志, 季珏, 师卫华, 邓孺孺, 梁业恒, 熊龙海

Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model
Wenya LIU, Anzhi YUE, Jue JI, Weihua SHI, Ruru DENG, Yeheng LIANG, Longhai XIONG
表2 传统方法结果精度对比
Tab.2 The precision results comparison of traditional methods
指标 方法 切片1 切片2 切片3 切片4 切片5 切片6 平均值
Precision/% ML 52.28 41.18 44.77 75.87 50.40 63.70 54.70
SVM 68.42 54.87 69.74 76.37 43.71 58.39 61.92
RF 56.64 59.30 59.97 69.14 41.69 60.55 57.88
DeepLabv3+ 88.63 86.54 88.2 86.49 81.23 86.99 86.35
Recall/% ML 60.13 61.61 59.26 78.12 67.67 63.08 64.98
SVM 79.67 70.57 67.88 80.99 67.94 64.72 71.96
RF 59.37 68.95 65.17 75.68 69.27 64.09 67.09
DeepLabv3+ 83.42 87.11 86.96 78.73 88.08 86.26 85.09
F ML 0.56 0.50 0.51 0.77 0.56 0.63 0.59
SVM 0.74 0.62 0.69 0.79 0.53 0.61 0.66
RF 0.58 0.64 0.62 0.72 0.52 0.62 0.62
DeepLabv3+ 0.86 0.87 0.88 0.82 0.85 0.87 0.86
OA/% ML 73.99 65.29 64.12 81.11 74.94 72.42 71.98
SVM 84.32 75.98 80.60 82.18 71.41 69.19 77.68
RF 76.37 78.48 75.32 76.51 69.48 70.61 74.46
DeepLabv3+ 92.51 92.74 92.23 87.24 92.28 90.68 91.02