基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取
|
刘文雅, 岳安志, 季珏, 师卫华, 邓孺孺, 梁业恒, 熊龙海
|
Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model
|
Wenya LIU, Anzhi YUE, Jue JI, Weihua SHI, Ruru DENG, Yeheng LIANG, Longhai XIONG
|
|
表2 传统方法结果精度对比
|
Tab.2 The precision results comparison of traditional methods
|
|
指标 | 方法 | 切片1 | 切片2 | 切片3 | 切片4 | 切片5 | 切片6 | 平均值 | Precision/% | ML | 52.28 | 41.18 | 44.77 | 75.87 | 50.40 | 63.70 | 54.70 | SVM | 68.42 | 54.87 | 69.74 | 76.37 | 43.71 | 58.39 | 61.92 | RF | 56.64 | 59.30 | 59.97 | 69.14 | 41.69 | 60.55 | 57.88 | DeepLabv3+ | 88.63 | 86.54 | 88.2 | 86.49 | 81.23 | 86.99 | 86.35 | Recall/% | ML | 60.13 | 61.61 | 59.26 | 78.12 | 67.67 | 63.08 | 64.98 | SVM | 79.67 | 70.57 | 67.88 | 80.99 | 67.94 | 64.72 | 71.96 | RF | 59.37 | 68.95 | 65.17 | 75.68 | 69.27 | 64.09 | 67.09 | DeepLabv3+ | 83.42 | 87.11 | 86.96 | 78.73 | 88.08 | 86.26 | 85.09 | F值 | ML | 0.56 | 0.50 | 0.51 | 0.77 | 0.56 | 0.63 | 0.59 | SVM | 0.74 | 0.62 | 0.69 | 0.79 | 0.53 | 0.61 | 0.66 | RF | 0.58 | 0.64 | 0.62 | 0.72 | 0.52 | 0.62 | 0.62 | DeepLabv3+ | 0.86 | 0.87 | 0.88 | 0.82 | 0.85 | 0.87 | 0.86 | OA/% | ML | 73.99 | 65.29 | 64.12 | 81.11 | 74.94 | 72.42 | 71.98 | SVM | 84.32 | 75.98 | 80.60 | 82.18 | 71.41 | 69.19 | 77.68 | RF | 76.37 | 78.48 | 75.32 | 76.51 | 69.48 | 70.61 | 74.46 | DeepLabv3+ | 92.51 | 92.74 | 92.23 | 87.24 | 92.28 | 90.68 | 91.02 |
|
|
|