基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取
|
刘文雅, 岳安志, 季珏, 师卫华, 邓孺孺, 梁业恒, 熊龙海
|
Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model
|
Wenya LIU, Anzhi YUE, Jue JI, Weihua SHI, Ruru DENG, Yeheng LIANG, Longhai XIONG
|
|
表4 语义分割网络结果精度对比
|
Tab.4 The precision results comparison of semantic segmentation networks
|
|
指标 | 方法 | 切片1 | 切片2 | 切片3 | 切片4 | 切片5 | 切片6 | 平均值 | Precision/% | PspNet | 74.13 | 72.81 | 82.62 | 83.78 | 73.85 | 72.36 | 76.59 | SegNet | 76.34 | 70.09 | 81.94 | 85.79 | 78.66 | 78.69 | 78.59 | U-Net | 85.83 | 77.58 | 78.42 | 81.42 | 75.62 | 78.67 | 79.59 | DeepLabv2 | 74.09 | 81.41 | 81.03 | 86.19 | 72.91 | 74.30 | 78.32 | DeepLabv3+ | 88.63 | 86.54 | 88.20 | 86.49 | 81.23 | 86.99 | 86.35 | Recall/% | PspNet | 81.62 | 71.18 | 83.63 | 75.21 | 72.14 | 75.52 | 76.55 | SegNet | 80.83 | 85.19 | 78.70 | 73.68 | 74.20 | 85.67 | 79.71 | U-Net | 80.31 | 86.99 | 78.10 | 73.30 | 72.55 | 85.41 | 79.45 | DeepLabv2 | 78.31 | 81.52 | 88.82 | 81.49 | 74.80 | 79.81 | 80.79 | DeepLabv3+ | 83.42 | 87.11 | 86.96 | 78.73 | 88.08 | 86.26 | 85.09 | F值 | PspNet | 0.77 | 0.72 | 0.83 | 0.79 | 0.73 | 0.74 | 0.77 | SegNet | 0.79 | 0.77 | 0.80 | 0.79 | 0.76 | 0.82 | 0.79 | U-Net | 0.83 | 0.82 | 0.78 | 0.77 | 0.75 | 0.80 | 0.79 | DeepLabv2 | 0.76 | 0.81 | 0.85 | 0.84 | 0.75 | 0.76 | 0.79 | DeepLabv3+ | 0.86 | 0.87 | 0.88 | 0.82 | 0.85 | 0.87 | 0.86 | OA/% | PspNet | 87.13 | 84.79 | 89.30 | 84.09 | 79.79 | 87.25 | 85.39 | SegNet | 87.86 | 85.95 | 87.82 | 84.42 | 85.80 | 89.02 | 86.81 | U-Net | 90.96 | 89.53 | 86.32 | 82.44 | 84.05 | 88.73 | 87.01 | DeepLabv2 | 86.53 | 89.81 | 89.92 | 87.24 | 81.13 | 87.79 | 87.07 | DeepLabv3+ | 92.51 | 92.74 | 92.23 | 86.43 | 89.92 | 92.28 | 91.02 |
|
|
|