基于SU-RetinaNet的高分辨率遥感影像非正规垃圾堆检测
|
吴同, 彭玲, 胡媛
|
Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet
|
WU Tong, PENG Ling, HU Yuan
|
|
表1 不同参数配置下RetinaNet在验证集AP对比
|
Tab.1 Comparison of AP on the validation set under different parameter configurations using RetinaNet (%)
|
|
阶段 | 特征提取网络深度 | =0.25, γ=1 | =0.25, γ=2 | =0.25, γ=5 | =0.5, γ=1 | =0.5, γ=2 | =0.5, γ=5 | =0.75, γ=1 | =0.75, γ=2 | =0.75, γ=5 | 阶段1 | ResNet50 | 68.26 | 74.47 | 76.88 | 75.71 | 75.03 | 79.38 | 72.62 | 75.98 | 75.63 | ResNet101 | 72.52 | 72.09 | 74.25 | 70.84 | 72.49 | 78.78 | 70.93 | 77.09 | 75.46 | ResNet152 | 75.28 | 77.48 | 68.85 | 73.33 | 73.84 | 74.80 | 71.65 | 76.22 | 74.98 | 阶段2 | ResNet50 | 81.39 | 82.34 | 84.54 | 82.93 | 85.18 | 85.38 | 84.28 | 87.25 | 85.98 | ResNet101 | 81.49 | 83.76 | 83.17 | 78.99 | 83.77 | 83.59 | 79.97 | 82.03 | 83.26 | ResNet152 | 79.89 | 82.6 | 79.32 | 80.35 | 84.33 | 83.18 | 77.7 | 82.41 | 84.08 |
|
|
|