基于残差网络特征融合的高光谱图像分类
韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云

Classification of hyperspectral image based on feature fusion of residual network
HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun
表2 改进残差网络
Tab.2 Improved residual network
层数 输出尺寸大小 卷积核大小及个数 步长 激活层
conv1i 27×27 3 × 3 32 3 × 3 32 3 × 3 32 1×1 ReLU
pool1 14×14 2×2
conv2i 14×14 3 × 3 64 3 × 3 64 3 × 3 64 1×1 ReLU
pool2 7×7 2×2
Dconv1 18×18 5×5 64 1×1 ReLU
Dconv2 9×9 3×3 64 1×1 ReLU
M1 18×18 32
conv3i 18×18 3 × 3 32 3 × 3 32 3 × 3 32 1×1 ReLU
pool1 9×9 2×2 ReLU
conv4i 9×9 3 × 3 64 3 × 3 64 3 × 3 64 1×1 ReLU
pool2 5×5 2×2 ReLU
conv5 4×4 3×3 128 1×1 ReLU
pool5 2×2 2×2