基于残差网络特征融合的高光谱图像分类
|
韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云
|
Classification of hyperspectral image based on feature fusion of residual network
|
HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun
|
|
表2 改进残差网络
|
Tab.2 Improved residual network
|
|
层数 | 输出尺寸大小 | 卷积核大小及个数 | 步长 | 激活层 | conv1i | 27×27 | | 1×1 | ReLU | pool1 | 14×14 | — | 2×2 | — | conv2i | 14×14 | | 1×1 | ReLU | pool2 | 7×7 | — | 2×2 | — | Dconv1 | 18×18 | 5×5 64 | 1×1 | ReLU | Dconv2 | 9×9 | 3×3 64 | 1×1 | ReLU | M1 | 18×18 | 32 | — | — | conv3i | 18×18 | | 1×1 | ReLU | pool1 | 9×9 | — | 2×2 | ReLU | conv4i | 9×9 | | 1×1 | ReLU | pool2 | 5×5 | — | 2×2 | ReLU | conv5 | 4×4 | 3×3 128 | 1×1 | ReLU | pool5 | 2×2 | — | 2×2 | — |
|
|
|