基于RandLA-Net的机载激光雷达点云城市建筑物变化检测
|
孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋
|
RandLA-Net-based detection of urban building change using airborne LiDAR point clouds
|
MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu
|
|
表3 建筑物提取方法精度对比
|
Tab.3 Accuracy comparison of the building extraction method
|
|
年份 | 方法 | 准确率/% | 精准率/% | 召回率/% | F1分数 | Kappa系数 | 2017年 | RandLA-Net IRGB C | 98.52 | 88.21 | 97.45 | 92.60 | 0.917 8 | RandLA-Net RGB C | 98.49 | 88.83 | 96.45 | 92.48 | 0.916 4 | RandLA-Net I C | 98.32 | 88.15 | 95.45 | 91.65 | 0.907 2 | RandLA-Net I | 97.27 | 92.59 | 83.23 | 87.66 | 0.861 3 | ENVI LiDAR | 91.91 | 24.24 | 94.24 | 38.39 | 0.358 1 | TerraScan | 95.76 | 73.58 | 83.96 | 78.43 | 0.760 9 | DSM高程阈值法 | 93.55 | 88.61 | 63.85 | 74.22 | 0.706 4 | 2019年 | RandLA-Net IRGB C | 98.54 | 86.10 | 97.69 | 91.53 | 0.907 3 | RandLA-Net RGB C | 98.94 | 90.30 | 97.93 | 93.96 | 0.933 7 | RandLA-Net I C | 98.59 | 86.67 | 97.72 | 91.86 | 0.910 9 | RandLA-Net I | 94.26 | 38.24 | 97.94 | 55.00 | 0.525 7 | ENVI LiDAR | 97.93 | 86.17 | 90.76 | 88.41 | 0.872 7 | TerraScan | 94.83 | 72.68 | 71.46 | 72.06 | 0.692 2 | DSM高程阈值法 | 97.29 | 77.23 | 91.93 | 83.94 | 0.824 7 |
|
|
|