基于RandLA-Net的机载激光雷达点云城市建筑物变化检测
|
孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋
|
RandLA-Net-based detection of urban building change using airborne LiDAR point clouds
|
MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu
|
|
表5 建筑物变化检测结果精度对比
|
Tab.5 Accuracy comparison of building change detection results
|
|
方法 | 变化 类型 | 准确 率/% | 精准 率/% | 召回 率/% | F1 分数 | Kappa 系数 | RandLA- Net IRBG C | 增高 | 97.22 | 70.40 | 97.65 | 81.57 | 0.856 6 | 降低 | 87.23 | 99.71 | 93.05 | 新建 | 87.42 | 92.07 | 89.68 | 拆除 | 77.74 | 79.05 | 78.39 | RandLA- Net RBG C | 增高 | 97.61 | 82.23 | 97.71 | 89.30 | 0.876 9 | 降低 | 88.22 | 98.52 | 93.09 | 新建 | 87.73 | 93.24 | 90.40 | 拆除 | 78.91 | 84.54 | 81.63 | RandLA- Net I C | 增高 | 97.10 | 85.62 | 98.94 | 91.80 | 0.849 2 | 降低 | 91.63 | 99.54 | 95.42 | 新建 | 77.33 | 90.63 | 83.45 | 拆除 | 78.20 | 82.85 | 80.46 | RandLA- Net I | 增高 | 91.77 | 31.10 | 96.60 | 47.05 | 0.606 0 | 降低 | 36.72 | 100.00 | 53.72 | 新建 | 38.85 | 94.24 | 55.02 | 拆除 | 86.21 | 42.94 | 57.33 | ENVI LiDAR | 增高 | 90.46 | 11.05 | 64.22 | 18.86 | 0.502 4 | 降低 | 9.61 | 69.44 | 16.88 | 新建 | 79.55 | 35.58 | 49.17 | 拆除 | 30.27 | 88.06 | 45.05 | TerraScan | 增高 | 91.67 | 33.31 | 80.18 | 47.07 | 0.628 9 | 降低 | 21.82 | 73.95 | 33.70 | 新建 | 67.19 | 36.26 | 47.10 | 拆除 | 85.90 | 65.65 | 74.42 | DSM高程阈值法 | 增高 | 91.65 | 84.08 | 88.39 | 86.18 | 0.642 4 | 降低 | 71.99 | 100.00 | 83.71 | 新建 | 63.90 | 81.50 | 71.63 | 拆除 | 83.83 | 41.62 | 55.62 |
|
|
|