多尺度轻量化CNN在SAR图像地物分类中的应用
孙盛, 蒙芝敏, 胡忠文, 余旭

Application of multi-scale and lightweight CNN in SAR image-based surface feature classification
SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu
表1 ENet和ENet-CSPP的结构对比
Tab.1 Comparison of ENet and ENet-CSPP structures
ENet ENet-CSPP
层名 采样类型 输出大小/像素 层名 采样类型 输出大小/像素
initial 16×256×256
bottleneck1.0 downsampling 64×128×128 bottleneck1.0 downsampling 64×256×256
4bottlencek1.x 64×128×128 4bottlencek1.x 64×256×256
bottleneck2.0 downsampling 128×64×64 bottleneck2.0 downsampling 128×128×128
8bottleneck2.x 128×64×64 8bottleneck2.x 128×128×128
repeat section 2,without bottleneck2.0 CSPP N2×128×128
bottleneck4.0 upsampling 64×128×128 upsample1.0 upsampling N2×256×256
2bottleneck4.x 64×128×128 concat (N1+N2)×256×256
bottleneck5.0 upsampling 16×256×256 lastconv C×256×256
2bottleneck5.x 16×256×256 upsample2.0 upsampling C×512×512
fullconv C×512×512