多尺度轻量化CNN在SAR图像地物分类中的应用
|
孙盛, 蒙芝敏, 胡忠文, 余旭
|
Application of multi-scale and lightweight CNN in SAR image-based surface feature classification
|
SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu
|
|
表1 ENet和ENet-CSPP的结构对比
|
Tab.1 Comparison of ENet and ENet-CSPP structures
|
|
ENet | | ENet-CSPP | 层名 | 采样类型 | 输出大小/像素 | | 层名 | 采样类型 | 输出大小/像素 | initial | | 16×256×256 | | | | | bottleneck1.0 | downsampling | 64×128×128 | | bottleneck1.0 | downsampling | 64×256×256 | 4bottlencek1.x | | 64×128×128 | | 4bottlencek1.x | | 64×256×256 | bottleneck2.0 | downsampling | 128×64×64 | | bottleneck2.0 | downsampling | 128×128×128 | 8bottleneck2.x | | 128×64×64 | | 8bottleneck2.x | | 128×128×128 | repeat section 2,without bottleneck2.0 | | CSPP | | N2×128×128 | bottleneck4.0 | upsampling | 64×128×128 | | upsample1.0 | upsampling | N2×256×256 | 2bottleneck4.x | | 64×128×128 | | concat | | (N1+N2)×256×256 | bottleneck5.0 | upsampling | 16×256×256 | | lastconv | | C×256×256 | 2bottleneck5.x | | 16×256×256 | | upsample2.0 | upsampling | C×512×512 | fullconv | | C×512×512 | | | | |
|
|
|