联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法
林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇

Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR
LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu
表3 不同模型在测试集上的精度评价
Tab.3 Accuracy evaluation of different models on test set
模型 PA/% MIoU
/%
IoU
(背景)
/%
IoU
(采矿
沉陷)/%
训练
时间/h
FCN-32s 97.71 73.68 98.21 49.15 1.84
FCN-16s 98.16 76.61 98.38 54.84 1.88
FCN-8s 98.29 78.19 98.51 57.87 2.11
PSPNet 98.16 79.21 98.65 59.77 6.50
Deeplabv3 98.20 79.71 98.57 60.85 7.50
U-Net 98.31 79.24 98.27 60.20 5.08
本文模型 98.55 80.58 98.41 62.74 6.36