基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测
|
钟骁勇, 李洪义, 郭冬艳, 谢模典, 赵婉如, 胡碧峰
|
Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model
|
ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng
|
|
表3 使用不同训练集时RF和OK模型预测精度比较
|
Tab.3 Comparison of model performance with different training and validation dataset ratios
|
|
预测模型 | 抽样比 | 训练集 | 验证集 | r | ME | MAE | RMSE | r | ME | MAE | RMSE | RF-A | 8∶2 | 0.970 | -0.004 | 0.121 | 0.167 | 0.599 | -0.009 | 0.291 | 0.392 | 7∶3 | 0.970 | -0.004 | 0.121 | 0.167 | 0.567 | -0.014 | 0.299 | 0.401 | 6∶4 | 0.970 | -0.004 | 0.122 | 0.168 | 0.566 | -0.018 | 0.302 | 0.406 | RF-B | 8∶2 | 0.966 | -0.005 | 0.127 | 0.175 | 0.548 | -0.023 | 0.307 | 0.413 | 7∶3 | 0.967 | -0.005 | 0.127 | 0.175 | 0.525 | -0.019 | 0.308 | 0.418 | 6∶4 | 0.967 | -0.005 | 0.127 | 0.174 | 0.504 | -0.014 | 0.314 | 0.425 | OK | 8∶2 | 0.679 | 0.002 | 0.261 | 0.364 | 0.559 | 0.009 | 0.311 | 0.409 | 7∶3 | 0.683 | 0.001 | 0.259 | 0.357 | 0.588 | 0.007 | 0.289 | 0.394 | 6∶4 | 0.652 | 0.002 | 0.278 | 0.379 | 0.541 | 0.010 | 0.328 | 0.414 |
|
|
|