基于空间模糊C均值聚类和贝叶斯网络的抗噪声遥感图像变化检测
王子浩, 李轶鲲, 李小军, 杨树文

Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network
WANG Zihao, LI Yikun, LI Xiaojun, YANG Shuwen
表4 FLICM-SBN-CVAPS的噪声敏感度表(Kappa系数值)
Tab.4 Noise sensitivity table for FLICM-SBN-CVAPS(Kappa coefficient value)
算法 椒盐噪
声0.4%
椒盐噪
声0.6%
零均值,方差为
0.001高斯噪声
零均值,方差为0.001高
斯噪声+椒盐噪声0.2%
零均值,方差为0.001高
斯噪声+椒盐噪声0.4%
零均值,方差为0.001高
斯噪声+椒盐噪声0.6%
FLICM-SBN-CVAPS 0.868 0.720 0.853 0.861 0.778 0.754
FCM-SBN-CVAPS 0.821 0.700 0.501 0.767 0.742 0.728
FCM_S1-SBN-CVAPS 0.885 0.882 0.873 0.864 0.876 0.861
FCM_S2-SBN-CVAPS 0.882 0.881 0.881 0.881 0.883 0.880
SVM-CVAPS 0.693 0.668 0.596 0.675 0.638 0.538