基于机载LiDAR技术植被茂密区小型滑坡识别与评价
Identification and assessment of small landslides in densely vegetated areas based on airborne LiDAR technique
通讯作者: 刘汉湖(1978-),男,博士,教授,主要从事遥感地质方面的教学和科研工作。Email:liuhanhu@cdut.edu.cn。
责任编辑: 陈昊旻
收稿日期: 2023-04-18 修回日期: 2023-06-8
基金资助: |
|
Received: 2023-04-18 Revised: 2023-06-8
作者简介 About authors
陈 刚(1987-),男,硕士,高级工程师,主要从事于地质灾害调查与评价、水文地质与工程地质的研究。Email:
山体滑坡会导致生命和财产损失,获取完整的滑坡空间分布图及对易发区域的准确判定有利于指导生产、生活和生态空间优化。在滑坡调查过程中,茂密的植被覆盖使滑坡调查难度加大,机载激光雷达(light detection and ranging,LiDAR)技术的穿透能力使真实地形特征得以呈现,从而实现植被茂密区滑坡识别。该文通过仿地飞行获取研究区LiDAR点云数据,基于点云数据得到数字高程模型(digital elevation model,DEM),在山体阴影分析、彩色增强显示及三维场景模拟基础上,识别出区域内已有滑坡的位置与规模,经野外核实,滑坡解译精度为86.4%。针对滑坡易发区评价问题,以现有滑坡为样本,首次采用遥感分类思维开展滑坡易发区划定,采用小区域内与滑坡发育有关的高程、坡度和地表起伏度组合成影像,以支持向量机为分类方法,判定出滑坡易发区域,经滑坡检验样本分析,滑坡识别精度为81.91%。研究表明: 基于高精度的LiDAR数据及其视觉增强后的图像能识别小型滑坡,采用支持向量机分类法可以准确确定滑坡易发区,为下一步三生空间规划与优化提供依据。
关键词:
Landslides may cause the loss of lives and property, and an accurate and complete map showing the spatial distribution of landslides and the determination of landslide susceptibility areas assist in guiding the optimization of the production, living, and ecological spaces. However, landslide investigations are complicated by dense vegetation. LiDAR technology enables the presentation of actual terrain features, thereby achieving landslide identification in densely vegetated areas. This study obtained the LiDAR point cloud data of the study area through ground-imitating flight and then built a digital elevation model (DEM) through data processing. Then, based on mountain shadow analysis, color-enhanced presentation, and 3D scene simulation, the locations and scales of existing landslides in the study area were identified. The field verification revealed an interpretation accuracy of landslides of up to 86.4%. For the assessment of landslide susceptibility areas, this study, with existing landslides as samples, delineated landslide susceptibility areas through remote sensing classification for the first time. Specifically, images were synthesized using the landslide-related elevations, slopes, and surface undulations, and then landslide susceptibility areas were determined using the support vector machine (SVM) classification method. The analysis of the inspection samples reveals a landslide identification accuracy of 81.91%. The results show that the image identification based on high-accuracy LiDAR data and visually enhanced images allows for the delineation of small landslides and that the SVM classification method enables the accurate location of landslide susceptibility areas. This study provides a basis for the future planning and optimization of the production, living, and ecological spaces.
Keywords:
本文引用格式
陈刚, 郝社锋, 蒋波, 喻永祥, 车增光, 刘汉湖, 杨容浩.
CHEN Gang, HAO Shefeng, JIANG Bo, YU Yongxiang, CHE Zengguang, LIU Hanhu, YANG Ronghao.
0 引言
遥感技术自20世纪兴起,在各行各业中应用颇为广泛,地质灾害调查与判别分析是遥感技术的重要应用领域。20世纪90年代,遥感技术主要通过卫星光学影像(以Landsat和SPOT为代表)开展大型工程中大型地质灾害的调查。自1999年美国发射IKONOS卫星开始,地质灾害遥感进入到以米级空间分辨率为数据源的光学遥感应用中,随后QuickBird,GeoEye,WorldView等一系列商业高空间分辨率卫星问世,这阶段遥感地质灾害主要应用在一些大型工程地质灾害普查和详查中。2008年汶川地震后,航空遥感迎来飞速发展,尤其是2012年“大疆”消费级无人机的快速发展,无人机遥感日益普及,无人机遥感在小区域或单体地质灾害精细化分析中具有明显优势。2013年后,我国发射高分系列卫星,获得米级空间分辨率光学遥感数据,基本替代了国外同类卫星数据。2014年,Sentinel-1A/1B数据的免费公开使用,国内掀起了合成孔径雷达干涉测量(literferometric synthetic aperture Radar,InSAR)技术识别隐患地质灾害的研究热潮,但InSAR形变分析在植被覆盖区域效果不佳[1-2]。2012年,机载激光雷达(light detection and ranging,LiDAR)技术在国内滑坡识别中开始应用[3],2019年后,基于机载LiDAR技术的地质灾害识别受到重视[4-5]。
相比于传统光学遥感和InSAR技术,LiDAR系统采用的是主动式直接测量方法,垂向精度高,能够不受低光照、雾霾或云覆盖的影响,全天候全天时工作,且能够部分穿透植被,适宜于气候多变、条件复杂、高植被覆盖,且对高程精度要求较高区域的地形测量。因此,LiDAR技术在植被高覆盖区域的地质灾害调查与判别应用中具有明显优势。
在国外,LiDAR技术自20 a前就开始应用于滑坡的识别与分析[6⇓⇓-9]。在国内,机载LiDAR技术在2012年最早应用于三峡地区滑坡识别中[3]; 而后,邵延秀等[10]采用LiDAR方法对兰州大学试验站黄土地质灾害观测区域进行了测量; 王绚等[11]基于LiDAR数据采用红色立体地图可视化方法对九寨沟震区熊猫海区域地质灾害进行了解译; 佘金星等[12]以九寨沟震区为例,基于LiDAR数据构建了遥感解译图谱; 彭艺伟等[13]采用LiDAR技术,对江苏省宜兴市竹海风景区公路边滑坡各种地表参数进行了分析; 郭晨等[14]利用机载LiDAR数据,结合天空视域因子可视化方法,对四川丹巴县城周边地质灾害进行了识别; 邓博等[15]获取了深圳全域机载LiDAR数据,建立了3 500多处斜坡类地质灾害典型标记,并开展了地质灾害危险性评价。
综上分析,前人研究多集中在应用LiDAR数据开展大型滑坡地质灾害的识别,比如丹巴地区的滑坡、九寨沟震区滑坡、三峡库区滑坡等,这些地质灾害规模大、连片性好,多发育在高山峡谷区,有植被覆盖,但覆盖度有限,LiDAR识别效果好。而江苏省溧阳地区为低山地貌,植被覆盖度较高,滑坡规模小,受滑坡规模和植被覆盖影响,该地区滑坡地质灾害识别难度很大。郭晨等[14]研究也指出面积小于900 m2的地质灾害难以识别,溧阳地区滑坡多为小型,规模大多在500 m2以下,如何应用LiDAR数据识别植被茂密区小型滑坡是本文研究的目标之一。在前人的研究中,应用LiDAR技术重在对其数据处理与数据可视化方法的研究,获取成果为已有地质灾害的特征分析,而如何基于LiDAR数据对区域内潜在滑坡区域准确判定方面的研究较少,本文尝试基于LiDAR数据开展小区域范围内滑坡地质灾害的易发区域预测。
1 研究区概况及数据源
1.1 研究区概况
溧阳市西渚岭位于常州溧阳市天目湖镇(图1),E119°27'20″~119°27'47″,N31°13'00″~31°13'23″,面积为0.39 km2。研究区高程(CGCS2000大地高)介于75.4 ~203 m,高差为127.6 m,为低山地貌。该区域西、南、东三面环山,山体斜坡成阶梯状分布,山脊浑圆,植被覆盖度高。
图1
1.2 数据采集与处理
本次LiDAR数据采集飞行平台使用成都奥伦达科技有限公司的Miracle 3工业级无人机系统,测量采用CBI-300P厘米级高精度轻小型激光雷达测量系统,采用仿地飞行模式,相对航高为100 m,航距设置为80 m,航速10 m/s。数据采集与处理技术流程如图2所示。
图2
数据预处理采用AlundarPlatform点云处理软件“分类”模块的“离群点检测”功能进行自动处理,不需要人工干预; 点云地面滤波采用以TerraSolid软件自动滤波为主,TerraSolid和CloudCompare软件相结合的人工检查和手动滤波为辅助的混合方式,确保地面滤波结果的可靠性和准确性。图3(a)为扫描获取的原始点云,其剖面如图3(b)所示,采用软件自动滤波能够将上部明显的非地面点滤除,再通过手工方式对错误分类点(包括将地面点错分为非地面点和非地面点错分为地面点2种情况)进行修正,最终结果如图3(c)。为了检查点云测量精度,通过设计专门的航飞路线,并对采集到的明显地物点采用RTK精确测量坐标值,与点云测量坐标值进行统计分析结果表明,在飞行高度为50 m时,水平和垂向精度在3 cm左右; 在飞行高度为100 m时,水平和垂向精度均优于6.8 cm。测量成果能够满足滑坡识别和评价工作的需要。
图3
图3
研究区原始点云及地面点提取效果
Fig.3
Effect of extracting original point clouds and ground points in the study area
2 研究方法
2.1 山体阴影分析
山体阴影图能够直观高效地表示地形地貌特征,通过模拟光线对地表的照射获取每个像元的照明值,并且综合分析研究区的不同方位角山体阴影图,能够发现很多微地貌特征。山体阴影图的计算主要有2个重要参数: 太阳高度角(solar elevation angle,SEA)和太阳方位角(solar azimuth angle,SAA)。为了模拟立体形态,SEA一般设置为45°,而不同方位生成的山体阴影图具有不同的立体效果。
图4
图4
双向山体阴影图和多向山体阴影图中光线模拟方向
Fig.4
Light simulation direction in bidirectional and multi-directional mountain shadow maps
2.2 彩色增强显示
山体阴影图为黑白图像,常见的8位数字灰度图像256级中人眼能分辨的数量大概在40个左右,所以灰度图像常有部分细节信息无法显现出来。因此,把灰度图像用伪彩色显示,能使图像中地物细节更好地被识别发现,本文采用了以下几种彩色增强显示方法:
1)地形彩色渲染。Relief Map(也称Shaded Relief Map或Hillshade Map),指通过制图方法在二维地图上展现出三维地表形态。一般情况下,在地理信息系统(geographic information system,GIS)中都是将由数字高程模型(digital elevation model,DEM)得到的灰度阴影图和彩色的DEM图层叠加,通过控制透明度来实现的,这种方式的视觉效果主要取决于山体阴影图,经过试验,底图为双向山体阴影图效果较好。
2)影像函数增强法。ArcGIS10以上软件自带影像函数功能可以制作立体感地图,该方法基于DEM,通过设置颜色带和光照模拟参数,直接生成影像函数增强后的彩色图像。
3)图像融合色彩增强。图像融合色彩增强方法既不会影响DEM的色彩,又不丧失阴影图细节。这里用的图像融合方法是超分辨率贝叶斯法,该方法将DEM伪彩色分割后转为彩色图像与山体阴影图进行融合,进而生成一个新的图层,即图像融合后的彩色增强图。该效果在背光面效果较好,而阳光直射面相对较差。
4)RRIM彩色增强法。Chiba等[17]提出一种红色立体图(red relief image map,RRIM)增强法,该方法根据人眼视觉功能,选用红色为底能最大限度地展现细微的地貌信息,RRIM由地形正开度、地形负开度与坡度叠加形成。
2.3 滑坡因子分析
不同于传统的县级以上区域的滑坡易发性评价,本文区域面积不足0.5 km2,属于小区域大比例尺滑坡易发性评价,很多地质灾害易发性评价因子如地层岩性、断层构造、地震活动和降雨条件等在小区域内并无差异。同时根据野外调查,区域内滑坡的发育与坡向、植被覆盖度、道路、居民点和水系也无关联。因此,采用传统评价方式难以确定滑坡易发区,小区域内滑坡发育条件的差异性主要表现在地形条件的差异。研究区滑坡发育与高程、坡度和地表起伏度具有很好的相关性,滑坡发育高程位于77~130 m之间,水平距离10 m范围内地表起伏度介于8~12 m之间,滑坡后缘坡度在40°以上,中前缘坡度在20°~40°之间。因此,本文采用高程、坡度和地表起伏度3个地形指标来分析滑坡发育程度,三者组合构成彩色图像,采用遥感分类圈定滑坡易发区。
2.4 支持向量机模型
传统马氏距离、欧式距离等分类方法都是从数据类别统计的角度上来研究图像分类[22],这些方法是在样本数足够多的前提下进行的,而本文滑坡易发区识别中,滑坡样本数量少,样本数量难以满足传统监督分类。支持向量机(support vector machine,SVM)适合有限样本(小样本)问题,在很大程度上解决了传统方法中存在的问题[23]。它是由Cortes等[24]在统计学习理论的基础上发展起来的一种机器学习方法,当2个类别的数值均值非常接近时,SVM也会根据这些有限的样本分开这2个类别。SVM的核心思想是把样本非线性映射到高维特征空间,使其线性可分,然后以结构风险最小化为归纳原则,求解能够将训练样本集划分为2类且几何间隔最大的一个分类超平面(图5)。图5中实心点和空心点代表2类样本,H为分类线,H1和H2分别为过各类中离分类线最近的样本且行分类线的直线,它们之间的距离即分类间隔。
图5
图5
SVM的基本思想示意图
Fig.5
Schematic diagram of the basic idea of support vector machine
SVM分类器的目标函数及其约束条件为:
式中:
3 结果与分析
3.1 山体阴影效果及彩色增强分析
图6(a)和(b)分别为315°和135°这2个不同方位角下生成山体阴影图,可以看出,1和6山体阴面地形起伏明显,2和5山体阳面亮度过高,地形特征不明显。这说明单侧光线下的山体阴影图中,完全阴影面和太阳直射面的细节丢失成为无法避免的问题,但地形效果又得益于阴影,没有阴影就难以观察地形起伏状态。图6(c)为SAA值为315°和135°复合的山体阴影图,图件整体偏亮,在陡坎处有阴影显示地形起伏,这种方法避免了太阳直射方向的地形细节丢失,但在一些地形起伏小的区域细节丢失,如3处位置丢失地形起伏信息。在多向山体阴影图中(图6(d)),由于光线模拟方向的限制,该图中坡向为22.5°~157.5°的区域阴影色调基本不变,导致这部分信息丢失。
图6
图6
不同制作方式下的山体阴影图
Fig.6
Shadow images of mountains under different production methods
综合来说,在单方向山体阴影图中,直射光照面地形效果较差,非直射光照面地形效果好; 在双方向山体阴影图中,各个区域地形效果相对平衡,整体效果较好,但也有局部细节信息丢失; 在多方向山体阴影图中,每个区域地形细节效果均弱于单方向山体阴影图中非直射光照条件下的地形效果。因此,在遥感解译过程中采用不同方向的单方向山体阴影图配合使用,而成果展示采用双方向或多方向山体阴影图。
图7-1
图7-2
3.2 滑坡遥感识别分析
根据前期野外踏勘,研究区为低山地貌,自然山坡坡度多位于15°~30°,山坡植被为竹林地,风化层较厚,无基岩出露。区内发育地质灾害类型单一,为蠕变型滑坡,滑坡特征较明显,表现为滑坡后壁清晰,呈现弧形形态,后壁坡度45°以上; 滑坡中后部土体拉裂,拉裂缝长度不一,约20~90 cm,宽度约10~30 cm,受地表竹林落叶及草类植被覆盖而不明显(图8)。
图8
图8
研究区野外踏勘滑坡照片
Fig.8
Landslide photos during field exploration in the study area
传统的滑坡遥感解译一般都是基于形态特征、色调特征和纹理特征等进行解译,例如滑坡体呈簸箕形、“U”型,高分图像上可见滑坡壁、滑坡台阶、滑坡舌、滑坡裂缝、滑坡鼓丘等现象,色调、纹理与周围明显不同等[26]。这些标志主要应用于植被覆盖少的大型滑坡区域,而植被覆盖茂密区小型滑坡的识别与之不同,LiDAR技术解决了植被覆盖对滑坡影响的问题,但小型滑坡的规模导致其细节信息难以表现,其判识尤为困难。
结合野外踏勘情况,对本区域小型滑坡的解译,主要依据有2个: 一是滑坡整体形态特征和其纹理形态与周围的差异性,尤其是滑坡后缘的弧形特征(图9),影像上表现为弧形的色带弯曲与色带变化; 二是量测滑坡体滑向与垂直滑向方向的高程变化趋势,如图A—A'剖面高程变化明显分为3段,由A—A'高程变化为缓和-急剧-缓和,表明滑坡后壁高程变化大,前缘临空性好,滑坡前缘隆起后变缓; B—B'剖面特征表明滑坡发生后形成两侧高,中间低的地形特征。利用机载LiDAR数据结合彩色增强图像及三维可视化场景模拟,在研究区范围内共识别和解译出地质灾害22处,经野外调查最终确认19处为滑坡地质灾害,解译精度为86.4%。
图9
图9
小型滑坡遥感解译特征
Fig.9
Remote Sensing Interpretation Characteristics of Small Landslides
3.3 基于SVM的滑坡易发区判别
研究区经遥感解译结合野外验证查明滑坡地质灾害19处,最大面积为506 m2,最小面积为45 m2,平均面积为147 m2。随机选取13处滑坡作为学习样本,包含48 775个像元,其他6处滑坡为检验样本,包含21 050个像元。经SVM分类识别后的分类图需要进行碎小图斑删除合并等后处理,最终获得滑坡易发区分布图(图10)。将6个滑坡检验样本与基于SVM分类识别后的滑坡易发区进行空间叠加分析,#1,#3,#9和#17全部位于滑坡易发区内,#7和#13滑坡后缘位于滑坡易发区内,而前缘并未在易发区范围内,前缘不在易发区范围共包含3 808个像元,占6个检验样本21 050个像元的18.09%,则滑坡识别精度为81.91%。
图10
经过数据分析,滑坡识别错误的主要原因为滑坡前缘植被过于茂密,获取的点云数量过少,在坡度及地表起伏度2个指标中出现异常,但其后缘表现清晰,3项指标能正确反映地形特征。研究证明,滑坡易发区能指示出与滑坡发生条件类似的区域,为下一步潜在滑坡的调查指明了方向。
4 结论
本文利用无人机LiDAR技术获取研究区点云数据,通过增强数据可视化方式并结合滑坡解译标志识别了滑坡,提出了基于遥感分类思想的滑坡易发区评价方法,为植被茂密的重点区域大比例尺地质灾害识别与评价提供了新思路。主要结论如下:
1)研究区江苏溧阳西渚岭地区植被覆盖茂密,光学遥感和InSAR技术在该区域难以发挥作用,而机载LiDAR技术具有较强的植被穿透能力,可以通过获取点云数据生产高分辨率DEM,真实反映去除植被后的地形形态。应用LiDAR技术穿透植被获取点云数据,数据本身可视性较低,山体阴影分析是提高可视化程度的有效方法,该方法通过阴影体现地表起伏细节,阴影部分不可避免地丢失信息。不论是单向光源、双向光源还是多向光源模拟山体阴影,不可能实现既保留地形细节又剔除阴影。在实际使用过程中,进行遥感解译可以采用多个单向光源下的山体阴影图互为补充,而展示成果图可以采用双向光源或多向光源条件下形成的山体阴影图。
2)彩色图像相较于黑白图像更具有可识别性,因此本文采用4种方法探讨了如何在保留山体阴影地形信息情况下增加色彩。4类方法各有特点,有的地形细节清晰,有的地形起伏明显,有的色彩鲜明,有的符合眼睛视觉效应。采用哪类色彩增强方法应结合识别对象特点。本区滑坡规模小,图像上主要通过滑坡整体形态特征和其纹理与周围的不同而判别,采用符合视觉效应的RRIM图像和图像融合色彩增强图像初步解译,然后结合具有地形细节信息的图像进行分析。利用机载LiDAR数据结合彩色增强图像及三维可视化场景模拟,在研究区范围内共识别和解译出地质灾害22处,经野外调查最终确认19处为滑坡地质灾害,解译精度86.4%。
3)基于LiDAR衍生数据可以判识已有的滑坡地质灾害,而那些易于滑动的区域,即潜在滑坡区根据相关数据难以判别,传统的滑坡易发区评价方法又不适应于小区域大比例尺的滑坡地质灾害易发区圈定。因此,本文基于野外踏勘,借鉴遥感图像分类思维,以小区域内滑坡地质灾害与非滑坡区的差异因子作为波段,构建了遥感图像,而后考虑滑坡样本少的特点,采用SVM方法进行分类识别。经滑坡检验样本分析,滑坡识别精度为81.91%。实验证明,该方法能够实现小区域内滑坡易发区圈定,为滑坡地质灾害易发区评价提供了一种新的解决思路。
参考文献
多源遥感地质灾害早期识别技术进展与发展趋势
[J].
DOI:10.11947/j.AGCS.2022.20220132
[本文引用: 1]
随着全球气候变化、矿产资源开采和大型人类工程活动的不断加剧,冰崩、塌陷、滑坡、地面沉降和地裂缝等多类型地质灾害呈现高频性和链生性的趋势,灾害后果更加严重。大范围高效率地质灾害的早期识别是防灾减灾的重要前提,也是工程安全的技术保障。本文首先介绍了多类型地质灾害的特点和常规识别方法;然后,重点介绍了光学遥感、微波遥感、机载LiDAR及多源遥感数据融合技术在不同类型地质灾害识别中的技术特点和典型应用,并对当前地质灾害早期识别存在问题和下一步发展趋势进行了总结与展望。
Technical progress and development trend of geological hazards early identification with multi-source remote sensing
[J].
DOI:10.11947/j.AGCS.2022.20220132
[本文引用: 1]
With the intensification of global climate change mineral resource exploitation and human engineering activities, the geological disasters including ice collapse, collapse, landslide, land subsidence and ground fissure are triggered with the trend of high frequency and in chain mode, which result in serious consequence. The early identification of geological disasters in large area and with high efficiency is the prerequisite for the hazard mitigation and prevention and the technical support of the engineering safety. In this paper, the characteristics of diverse geological disasters and traditional methods of their identification are introduced firstly. Then we focus on optical remote sensing, synthetic aperture radar, LiDAR and the fusion of multi-source remote sensing, where the technical flow and typical applications are given. Lastly, the current difficulties and the future trends are summarized and forwarded.
基于Sentinel-1数据的时序InSAR技术在滑坡监测方面的应用——以巴东地区为例
[J].
Monitoring landslide movements using time series InSAR with sentinel-1:Application to Badong area
[J].
基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警
[J].
Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards
[J].
九寨沟核心景区多源遥感数据地质灾害解译初探
[J].
Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data
[J].
Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics
[J].
Use of LiDAR to assess slope hazards at the Lihir gold mine,Papua New Guinea
[C]//
Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment
[J].
Power laws for accurate determination of landslide volume based on high-resolution LiDAR data
[J].
采用无人机载LiDAR进行快速地质调查实践
[J].
DOI:10.3969/j.issn.0253-4967.2017.06.007
[本文引用: 1]
激光雷达(Light Detection and Ranging,LiDAR)三维地形测绘技术已广泛应用于地质调查和地球科学研究中,其高精度特性推动了地球科学定量化发展;将其与无人飞行器集成为低空扫描系统,使其更加省时、便捷、高效,拓宽了LiDAR在野外调查的用途。将无人机载LiDAR测绘系统应用于野外地质调查,以2个实例展示了该系统LiDAR的优势与潜在使用前景。在活断层探测应用中,利用该系统对西秦岭北缘断裂漳县段南坡村研究点进行了扫描,有效地消除了地物和植被的影响,验证了断层展布位置,并获取了漳河T<sub>1</sub>阶地的抬升量约为1.3m。另外,还对兰州大学黄土地质灾害观测试验站进行了扫描,为进一步分析微地貌对浅层黄土滑坡的影响提供了高分辨率地形数据。以上2个例子,扫描时间均较短,在0.5h左右,而且扫描得到的点云数据平均每m<sup>2</sup>约为600个点,分辨率可达到cm级别。试验结果表明,无人机载LiDAR三维扫描有望成为1种常规、高效和经济的测绘手段。
Application of UAVLS to rapid geological surveys
[J].
植被茂密山区地质灾害遥感解译方法研究
[J].
Remote sensing interpretation method of geological hazards in lush mountainous area
[J].
九寨沟地震地质灾害隐患早期识别与分析研究
[J].
Early identification and analysis of earthquake and geological hazards in Jiuzhaigou
[J].
基于机载激光雷达的地质灾害识别关键技术及应用研究
[J].
Research on key technologies and application of geological hazard identification based on airborne LiDAR
[J].
复杂山区地质灾害机载激光雷达识别研究
[J].
Geohazard recognition by airborne LiDAR technology in complex mountain areas
[J].
利用机载LiDAR的深圳斜坡类地质灾害危险性评价
[J/OL].
Hazard evaluation of the slope in Shenzhen based on airborne LiDAR data
[J/OL].
A multidirectional,oblique-weighted,shaded-relief image of the island of Hawaii
[R]
Red relief image map: New visualization method for three dimensional data
[J].
国际滑坡风险评估与管理指南研究综述
[J].
A review of international landslide risk assessment and management guidelines
[J].
基于频率比与AHP模型的西藏东部地区滑坡易发性评价
[J].
Evaluation of landslide susceptibility in eastern Tibet based on frequency ratio and AHP model
[J].
顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价
[J].
DOI:10.11947/j.AGCS.2022.20220326
[本文引用: 1]
滑坡灾害易发性分析评价对地质灾害的防治与管理具有重要意义。针对滑坡灾害样本选择策略,单核支持向量机多特征映射不合理的问题,本文提出顾及样本优化选择的多核支持向量机(multiple kernel support vector machine,MKSVM)滑坡灾害易发性分析评价方法。为了保证样本平衡性并提高负样本的合理性,采用相对频率比(relative frequency,RF)综合评价各状态对于滑坡灾害易发性影响的重要程度,实现各评价因子状态的合理划分;利用确定性系数法(certainty factor,CF)计算各评价因子各状态分级影响滑坡灾害的敏感性,并在此基础上进行加权求和得到各栅格单元的滑坡灾害易发性指数,在滑坡灾害易发性指数极低和低易发区内随机选择与滑坡灾害点数目一致的非滑坡灾害点作为负样本数据。利用MKSVM对各特征空间最优核函数进行线性组合,解决了单一核函数映射不合理的问题,提高了模型的分类准确率和预测精度。以湖南省湘西土家族苗族自治州为研究区,从滑坡灾害易发性分区图、分区统计及评价模型精度3个方面对CF样本策略的MKSVM模型、CF样本策略的单核SVM模型、随机样本策略的MKSVM模型、随机样本策略的单核SVM模型进行了对比分析。结果表明,4种模型的受试者工作特征曲线(receiver operating characteristic,ROC)下的面积(area under curve,AUC)分别为0.859、0.809、0.798、0.766,验证了CF样本策略的合理性、有效性及MKSVM模型的可靠性。
Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility
[J].
DOI:10.11947/j.AGCS.2022.20220326
[本文引用: 1]
The analysis and evaluation of landslide disaster susceptibility is of great significance to the prevention and management of geological disasters. In view of the sample selection strategy and the unreasonable multi-feature mapping in single-kernel vector machine, this paper proposes the landslide susceptibility analysis and evaluation method of multiple kernel support vector machine (MKSVM) considering the sample optimization selection. To ensure sample balance and improve the plausibility of negative samples, using the relative frequency ratio (relative frequency, RF) comprehensively evaluate the importance degree of each state in the influence of landslide disaster susceptibility, the purpose is to realize the reasonable division of each evaluation factor state; Using the deterministic coefficient method (certainty factor, CF) calculates the sensitivity of each state of each evaluation factor, the weighted sum has obtained the landslide disaster susceptibility index of each grid cell, non-landslide disaster points consistent with the number of landslide disaster points were randomly selected in the very low and low landslide disaster prone index as the negative sample data. Then, multi-kernel learning is used to select the SVM optimal kernel function and to linear combine the optimal kernel functions in each feature space to avoid unreasonable mapping of a single kernel function, and it improve the classification accuracy and prediction accuracy of the model. Taking Xiangxi Tujia and Miao Autonomous Prefecture of Hunan province as the research area, MKSVM model of CF sample strategy, single-kernel SVM model of CF sample strategy, MKSVM model of random sample strategy and single-kernel SVM model of random sample strategy were compared analyzed from three aspects of landslide disaster prone zoning map, partition statistics and evaluation model accuracy. The results indicate that the subject operating characteristic curves of the four models (receiver operating characteristic, area under the ROC) (area under curve, AUC) were 0.859,0.809,0.798,0.766, the rationality and validity of the CF sample strategy and the reliability of the MKSVM model are verified.
西藏地质灾害易发性及对水能开发适宜度影响
[J].
DOI:10.11821/dlxb202207003
[本文引用: 1]
西藏自治区是中国水能资源的战略储备库与未来重点开发区域,然而该区域地质灾害频发,给水能开发带来极大挑战,亟需系统研究。本文综合考虑西藏地区地质地貌、水文气象和植被覆盖等致灾因子,基于最大熵(MaxEnt)模型分析泥石流、崩塌、滑坡等典型地质灾害的易发性,结合水能资源分布禀赋,实现西藏地区水能开发适宜度评价。结果表明,雅鲁藏布江大拐弯羌纳—帮辛段水能开发适宜度最高,可优先开发;雅鲁藏布江上游夏如—拉孜段、怒江中游马利—林卡段、中林卡—察瓦龙段、支流伟曲河田妥—碧土段、澜沧江中游察雅—措瓦段、如美—盐井段、金沙江上段木协—戈波段、喜马拉雅山脉朋曲河流域为高水能开发高风险地区,需谨慎开发;雅鲁藏布江中游仁布—曲水段、易贡藏布忠玉—易贡段、察隅河下察隅以南段、朗钦藏布下游段为中水能开发低风险区,可根据需求局部开发或暂缓开发;其余区域水能开发适宜度较低,不建议开发。本文针对西藏地区提出一种快速有效的水能开发适宜度评价体系,可为该区域水能开发规划提供科学依据。
Distribution of hydropower development suitability in Tibet in the face of geological hazard susceptibility
[J].
DOI:10.11821/dlxb202207003
[本文引用: 1]
Tibet is recognized as the key repository and focal area for future hydropower development in China because of its high capacity for hydropower storage; however, frequent occurrence of geological hazards in this region have posed great challenges to us. Priority should be given to the effects of geological hazards on the suitability of areas in Tibet for hydropower development. Based on the maximum entropy model, the susceptibility of potential development areas to three typical geological hazards (debris flow, avalanche, and landslide) was calculated using data of landforms, hydrometeorology, and vegetation coverage of Tibet. Furthermore, hydropower development suitability was evaluated by considering distribution of potential hydropower storage alongside geological hazard susceptibility. The results show that the Qiangna-Bangxin section of the Great Bend of the Yarlung Tsangpo River has the highest suitability and would be a prime development target. The Mali-Linka and Zhonglinka-Chawalong sections in the middle reaches of the Nujiang River, the Tiantuo-Bitu section of the Weiqu River, the Chaya-Cuowa, Rumei-Yanjing, and Muxie-Gobo sections in the upper reaches of the Jinsha River, the Motuo-Lijia and Xiaru-Penji sections in the lower and upper reaches, respectively, of the Yarlung Tsangpo River, and the Pengqu River Basin in the Himalayas are all highly suitable for hydropower development. However, these areas also show high susceptibility to geological hazards, so they should be developed with caution. The Renbu-Qushui section in the middle reaches of the Yarlung Tsangpo River, the Zhongyu-Yigong section of the Yigong Tsangpo River, the southern section of the Chayu River, and the lower reaches of the Langqin Tsangpo River show moderate suitability and low hazard susceptibility, and thus present future development opportunities. Therefore, other areas are not suitable for hydropower development. This study presents an effective suitability evaluation method for hydropower development in Tibet, and its results provide a scientific basis for hydropower planning and site selection in this region.
基于高分辨率遥感影像的青海湖沙柳河流域土地覆盖监督分类方法对比
[J].
Comparisons of supervised classification methods for land cover based on high spatial resolution remote sensing images in Shaliu River basin of Qinghai Lake
[J].
基于支持向量机的老挝丰沙里省新开辟刀耕火种遥感监测及其空间特征
[J].
Freshly-opened swidden mapping using support vector machine (SVM)and spatial characteristics in Phongsaly Province,Laos
[J].
基于SVM的地下采煤区沉陷灾害发育敏感性分区研究
[J].
SVM-based sensitivity zoning of subsidence disaster development in the underground coal mining areas
[J].
典型滑坡遥感影像特征研究
[J].
A study of remote sensing image features of typical landslides
[J].
/
〈 |
|
〉 |
