一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法
|
潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林
|
An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images
|
PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin
|
|
表2 Potsdam→Vaihingen对比实验的结果评价
|
Tab.2 Evaluation of the results of the Potsdam → Vaihingen comparative experiment
|
|
模型 | mIOU | IOU | 其他类 | 汽车 | 树木 | 低矮植被 | 建筑 | 道路 | Deeplabv2 | 0.264 7 | 0.066 3 | 0.074 5 | 0.186 5 | 0.244 3 | 0.488 6 | 0.527 9 | AdaptSegNet | 0.423 1 | 0.075 2 | 0.263 4 | 0.457 8 | 0.401 1 | 0.720 1 | 0.620 9 | CLAN | 0.410 1 | 0.084 7 | 0.164 0 | 0.544 1 | 0.274 1 | 0.773 0 | 0.619 9 | ADVENT | 0.434 8 | 0.168 6 | 0.221 8 | 0.510 7 | 0.316 9 | 0.768 2 | 0.622 4 | Metacorrection | 0.440 4 | 0.102 8 | 0.249 5 | 0.517 1 | 0.400 1 | 0.744 8 | 0.628 1 | OA-GAL | 0.474 8 | 0.114 8 | 0.219 5 | 0.573 2 | 0.435 5 | 0.818 2 | 0.687 4 |
|
|
|