基于多源时序SAR数据的涿州洪涝淹没动态监测
|
庄会富, 王鹏, 苏亚男, 张祥, 范洪冬
|
Dynamic monitoring of flood inundation in Zhuozhou, Hebei Province based on multi-temporal SAR data
|
ZHUANG Huifu, WANG Peng, SU Yanan, ZHANG Xiang, FAN Hongdong
|
|
表3 对比方法精度评估
|
Tab.3 Accuracy assessment of comparative methods
|
|
| 方法 | Kappa | F1 | OA | P | R | 验证集Ⅰ | KI | 0.300 6 | 0.453 6 | 0.751 2 | 0.378 7 | 0.565 4 | OTSU | 0.040 6 | 0.268 1 | 0.618 8 | 0.206 5 | 0.382 4 | K-means | 0.040 6 | 0.268 1 | 0.618 8 | 0.206 5 | 0.382 4 | LR | 0.438 4 | 0.510 1 | 0.862 5 | 0.729 6 | 0.392 1 | MR | 0.772 3 | 0.809 2 | 0.937 4 | 0.912 9 | 0.726 6 | DDNet | 0.679 0 | 0.725 8 | 0.916 6 | 0.908 4 | 0.604 4 | PNLI | 0.834 8 | 0.866 1 | 0.949 1 | 0.833 1 | 0.901 9 | 本文方法T1→T2 | 0.853 5 | 0.882 0 | 0.953 8 | 0.827 0 | 0.944 8 | 本文方法T2→T1 | 0.859 2 | 0.886 5 | 0.955 8 | 0.835 3 | 0.944 3 | 验证集Ⅱ | KI | 0.719 2 | 0.758 0 | 0.931 4 | 0.654 8 | 0.899 7 | OTSU | 0.719 2 | 0.758 0 | 0.931 4 | 0.654 8 | 0.899 7 | K-means | 0.719 2 | 0.758 0 | 0.931 4 | 0.654 8 | 0.899 7 | LR | 0.727 0 | 0.763 2 | 0.936 5 | 0.687 3 | 0.857 9 | MR | 0.788 3 | 0.813 1 | 0.956 3 | 0.829 3 | 0.797 6 | DDNet | 0.717 8 | 0.747 5 | 0.946 0 | 0.846 1 | 0.669 6 | PNLI | 0.795 6 | 0.820 1 | 0.956 9 | 0.816 1 | 0.824 1 | 本文方法T1→T2 | 0.843 2 | 0.862 2 | 0.966 5 | 0.847 5 | 0.877 4 | 本文方法T2→T1 | 0.844 5 | 0.863 8 | 0.966 2 | 0.833 1 | 0.896 8 |
|
|
|