改进3D-Octave卷积的高光谱图像分类方法
|
郑宗生, 王政翰, 王振华, 卢鹏, 高萌, 霍志俊
|
An improved 3D Octave convolution-based method for hyperspectral image classification
|
ZHENG Zongsheng, WANG Zhenghan, WANG Zhenhua, LU Peng, GAO Meng, HUO Zhijun
|
|
表1 不同算法在IP数据集的分类结果
|
Tab.1 Classification results of different algorithms on IP dataset(%)
|
|
类别 | SVM | 3D-CNN | SSRN | HybridSN | DBDA | 本文方法 | 1 | 0.00 | 94.40 | 88.10 | 93.18 | 100.00 | 100.00 | 2 | 65.10 | 89.22 | 97.57 | 98.71 | 98.75 | 99.33 | 3 | 84.27 | 93.85 | 97.83 | 97.38 | 99.73 | 100.00 | 4 | 100.00 | 93.75 | 96.35 | 99.01 | 98.60 | 100.00 | 5 | 95.08 | 97.97 | 97.25 | 99.30 | 99.52 | 99.24 | 6 | 90.45 | 97.93 | 99.07 | 97.90 | 99.84 | 94.60 | 7 | 100.00 | 92.86 | 100.00 | 96.00 | 95.83 | 99.89 | 8 | 93.71 | 94.81 | 99.54 | 100.00 | 100.00 | 100.00 | 9 | 0.00 | 66.67 | 75.01 | 80.95 | 94.74 | 100.00 | 10 | 79.78 | 90.16 | 97.61 | 97.74 | 97.28 | 97.92 | 11 | 48.36 | 96.40 | 95.82 | 97.81 | 97.69 | 99.01 | 12 | 66.54 | 92.55 | 97.14 | 98.27 | 99.60 | 98.51 | 13 | 95.71 | 91.92 | 100.00 | 99.45 | 96.86 | 97.87 | 14 | 88.00 | 99.39 | 98.69 | 99.56 | 99.30 | 99.04 | 15 | 72.63 | 96.18 | 95.47 | 96.90 | 98.85 | 98.96 | 16 | 99.56 | 91.76 | 92.59 | 88.76 | 88.17 | 97.60 | OA | 66.94 | 94.82 | 97.25 | 97.92 | 98.64 | 99.32 | Kappa | 61.20 | 94.10 | 96.85 | 97.76 | 98.43 | 99.13 | AA | 45.47 | 90.82 | 95.30 | 97.11 | 98.31 | 99.15 |
|
|
|