改进3D-Octave卷积的高光谱图像分类方法
|
郑宗生, 王政翰, 王振华, 卢鹏, 高萌, 霍志俊
|
An improved 3D Octave convolution-based method for hyperspectral image classification
|
ZHENG Zongsheng, WANG Zhenghan, WANG Zhenhua, LU Peng, GAO Meng, HUO Zhijun
|
|
表2 不同算法在PU数据集的分类结果
|
Tab.2 Classification resultsof different algorithms on PU dataset(%)
|
|
类别 | SVM | 3D-CNN | SSRN | HybridSN | DBDA | 本文方法 | 1 | 93.37 | 96.40 | 98.25 | 97.26 | 98.80 | 99.94 | 2 | 94.73 | 99.13 | 99.85 | 99.87 | 99.90 | 100.00 | 3 | 74.46 | 91.14 | 93.05 | 99.09 | 97.53 | 99.50 | 4 | 90.37 | 97.50 | 97.00 | 99.89 | 99.93 | 98.10 | 5 | 99.92 | 99.24 | 99.92 | 99.23 | 98.17 | 99.77 | 6 | 89.20 | 99.30 | 96.61 | 99.78 | 99.81 | 99.67 | 7 | 81.68 | 92.64 | 98.58 | 100.00 | 99.61 | 99.60 | 8 | 79.04 | 90.23 | 92.65 | 96.41 | 98.02 | 98.50 | 9 | 100.00 | 94.22 | 96.95 | 99.77 | 99.88 | 99.51 | OA | 91.85 | 97.41 | 98.75 | 99.08 | 99.37 | 99.61 | Kappa | 89.22 | 96.56 | 98.34 | 98.68 | 99.17 | 99.44 | AA | 89.77 | 95.44 | 97.60 | 97.87 | 98.53 | 99.08 |
|
|
|