基于资源1号02D高光谱图像湿地水体分类方法对比——以白洋淀为例
陈民, 彭栓, 王涛, 吴雪芳, 刘润璞, 陈玉烁, 方艳茹, 阳平坚

A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland
CHEN Min, PENG Shuan, WANG Tao, WU Xuefang, LIU Runpu, CHEN Yushuo, FANG Yanru, YANG Pingjian
表5 去除低信噪比波段后基于单点光谱和基于邻域范围光谱的湿地分类精度
Tab.5 Wetland classification accuracy based on pixel-based method and patch-based method after removing low signal-to-noise ratio bands
类型 模型 每类样本的分类准确率 OA/% mAP/% F1 R/% OA-AB/%
湖泊水
面/%
内陆滩
涂/%
村庄/% 沼泽/% 水浇地/%



SVM 96.68 53.85 96.93 40.63 92.38 80.30 84.00 0.79 86.14 83.90
AdaBoost 97.86 64.40 97.24 59.22 92.71 86.44 92.80 0.85 90.76 89.48
RF 97.44 60.11 96.12 53.25 91.44 84.05 90.92 0.83 88.72 85.33
CNN1D 97.32 85.21 99.45 84.85 95.87 94.30 98.13 0.94 95.94 94.54
RNN 96.47 81.47 99.45 86.61 96.01 93.12 97.20 0.93 94.55 94.03
SSTN(Pixel) 94.84 83.40 99.16 85.62 94.56 92.55 95.98 0.92 92.48 93.79
ViT(Pixel) 95.95 88.38 99.00 79.04 95.53 93.95 97.75 0.93 95.01 95.11



ResNet 96.97 87.69 98.07 92.37 97.54 95.10 98.74 0.95 96.36 96.67
CNN2D1D 97.61 82.49 99.49 84.62 96.18 93.79 97.99 0.94 96.28 96.03
CNN3D 95.88 85.54 98.67 92.54 94.62 93.75 97.94 0.94 95.44 96.20
ViT 95.53 81.71 98.50 85.77 93.96 92.35 96.66 0.92 93.47 98.11
SSRN 99.88 97.36 99.98 94.21 99.19 99.09 99.95 0.99 99.62 99.19
SSTN 98.05 95.43 99.65 94.79 97.82 97.51 99.57 0.98 98.02 99.05