基于资源1号02D高光谱图像湿地水体分类方法对比——以白洋淀为例
|
陈民, 彭栓, 王涛, 吴雪芳, 刘润璞, 陈玉烁, 方艳茹, 阳平坚
|
A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland
|
CHEN Min, PENG Shuan, WANG Tao, WU Xuefang, LIU Runpu, CHEN Yushuo, FANG Yanru, YANG Pingjian
|
|
表5 去除低信噪比波段后基于单点光谱和基于邻域范围光谱的湿地分类精度
|
Tab.5 Wetland classification accuracy based on pixel-based method and patch-based method after removing low signal-to-noise ratio bands
|
|
类型 | 模型 | 每类样本的分类准确率 | OA/% | mAP/% | F1 | R/% | OA-AB/% | 湖泊水 面/% | 内陆滩 涂/% | 村庄/% | 沼泽/% | 水浇地/% | 基 于 单 点 | SVM | 96.68 | 53.85 | 96.93 | 40.63 | 92.38 | 80.30 | 84.00 | 0.79 | 86.14 | 83.90 | AdaBoost | 97.86 | 64.40 | 97.24 | 59.22 | 92.71 | 86.44 | 92.80 | 0.85 | 90.76 | 89.48 | RF | 97.44 | 60.11 | 96.12 | 53.25 | 91.44 | 84.05 | 90.92 | 0.83 | 88.72 | 85.33 | CNN1D | 97.32 | 85.21 | 99.45 | 84.85 | 95.87 | 94.30 | 98.13 | 0.94 | 95.94 | 94.54 | RNN | 96.47 | 81.47 | 99.45 | 86.61 | 96.01 | 93.12 | 97.20 | 0.93 | 94.55 | 94.03 | SSTN(Pixel) | 94.84 | 83.40 | 99.16 | 85.62 | 94.56 | 92.55 | 95.98 | 0.92 | 92.48 | 93.79 | ViT(Pixel) | 95.95 | 88.38 | 99.00 | 79.04 | 95.53 | 93.95 | 97.75 | 0.93 | 95.01 | 95.11 | 基 于 邻 域 | ResNet | 96.97 | 87.69 | 98.07 | 92.37 | 97.54 | 95.10 | 98.74 | 0.95 | 96.36 | 96.67 | CNN2D1D | 97.61 | 82.49 | 99.49 | 84.62 | 96.18 | 93.79 | 97.99 | 0.94 | 96.28 | 96.03 | CNN3D | 95.88 | 85.54 | 98.67 | 92.54 | 94.62 | 93.75 | 97.94 | 0.94 | 95.44 | 96.20 | ViT | 95.53 | 81.71 | 98.50 | 85.77 | 93.96 | 92.35 | 96.66 | 0.92 | 93.47 | 98.11 | SSRN | 99.88 | 97.36 | 99.98 | 94.21 | 99.19 | 99.09 | 99.95 | 0.99 | 99.62 | 99.19 | SSTN | 98.05 | 95.43 | 99.65 | 94.79 | 97.82 | 97.51 | 99.57 | 0.98 | 98.02 | 99.05 |
|
|
|