双重注意力下的多尺度残差遥感图像去雾网络
|
李愿, 付辉, 刘浩志
|
Multi-scale residual dehazing network for remote sensing images based on dual attention
|
LI Yuan, FU Hui, LIU Haozhi
|
|
表9 本文方法的参数量
|
Tab.9 Parameter quantity of the proposed method
|
|
类型 | 说明 | 种类 | 卷积 核数 | 卷积核 大小 | 参数量 | 输入层 | 输入 | — | — | — | — | 特征提 取模块 | 浅层特征 提取模块 | Conv+ReLU | 32 | 3×3 | 896 | Conv+ReLU | 32 | 3×3 | 896 | Conv+ReLU | 32 | 3×3 | 896 | 深层数据 提取模块 | Conv | 32 | 3×3 | 896 | Conv | 32 | 3×3 | 896 | Conv | 32 | 3×3 | 896 | Conv+ReLU | 64 | 3×3 | 55 360 | Conv+ReLU | 64 | 3×3 | 36 928 | 映射 网络 | 双映射网络 | Conv BN+ReLU | 64 — | 3×3 — | 36 928 — | Conv BN+ReLU | 64 — | 3×3 — | 36 928 — | Conv BN+ReLU | 64 — | 3×3 — | 36 928 — | Conv BN+ReLU | 64 — | 3×3 — | 36 928 — | Conv BN+ReLU | 64 — | 3×3 — | 36 928 — | Conv BN+ReLU | 64 — | 3×3 — | 36 928 — | 输出层 | 平行卷积 重建模块 | Conv+ReLU | 4 096 | 1×1 | 266 240 | Conv+ReLU | 128 | 3×3 | 4 718 720 | Conv+ReLU | 128 | 3×3 | 147 584 | Conv+ReLU | 128 | 3×3 | 147 584 | Conv+ReLU | 4 096 | 1×1 | 528 384 | 总计 | | — | — | — | 6 127 744 |
|
|
|