改进的残差式3D-CNN和近邻注意力的高光谱遥感图像分类
|
|
潘增滢, 吴瑞姣, 林易丰, 翁谦, 林嘉雯
|
Hyperspectral remote sensing image classification using improved residual 3D-CNN and neighborhood attention
|
|
PAN Zengying, WU Ruijiao, LIN Yifeng, WENG Qian, LIN Jiawen
|
|
表1 不同方法在IP数据集上的分类结果
|
Tab.1 Classification Results of Different Methods on IP Datasets
|
|
| 类别 | 1D-CNN | 2D-CNN | SSRN | HybridSN | A2S2K | morphFormer | LSGA | IR3NAN | | 苜蓿 | 22.93 | 55.61 | 72.93 | 79.76 | 79.27 | 89.51 | 88.29 | 97.56 | | 未翻耕的玉米地 | 59.95 | 78.06 | 84.92 | 95.35 | 98.67 | 97.11 | 98.79 | 98.96 | | 翻耕过的玉米地 | 51.02 | 82.53 | 89.21 | 93.36 | 98.33 | 96.49 | 95.92 | 98.89 | | 玉米地 | 38.78 | 82.35 | 91.60 | 88.69 | 97.56 | 95.82 | 97.32 | 98.50 | | 牧草区 | 73.72 | 95.52 | 96.74 | 92.34 | 98.92 | 96.46 | 98.32 | 98.69 | | 草地与树木 | 86.51 | 97.84 | 99.47 | 97.69 | 99.27 | 99.74 | 99.89 | 99.82 | | 已收割的牧草区 | 45.60 | 42.80 | 66.40 | 64.80 | 92.40 | 99.20 | 100.00 | 99.60 | | 风干的草料 | 94.26 | 99.49 | 98.09 | 97.19 | 99.81 | 99.79 | 99.88 | 99.93 | | 燕麦 | 18.89 | 65.56 | 9.44 | 94.44 | 99.44 | 84.44 | 97.78 | 98.33 | | 未翻耕的大豆田 | 48.00 | 76.99 | 86.82 | 96.49 | 98.89 | 98.74 | 99.22 | 99.05 | | 翻耕过的大豆田 | 67.89 | 84.51 | 97.24 | 95.71 | 99.38 | 98.45 | 99.50 | 99.67 | | 已清理的大豆田 | 43.73 | 82.73 | 98.45 | 91.46 | 99.29 | 95.13 | 98.65 | 99.16 | | 小麦 | 93.35 | 99.19 | 99.68 | 98.11 | 100.00 | 99.73 | 99.78 | 100.00 | | 树林 | 92.99 | 98.13 | 92.68 | 99.08 | 99.93 | 99.87 | 99.99 | 100.00 | | 建筑物、草地、树木、车道 | 39.39 | 89.57 | 89.34 | 88.1 | 98.67 | 98.30 | 98.79 | 100.00 | | 石、钢、塔、楼 | 89.76 | 98.81 | 98.57 | 81.79 | 98.10 | 94.76 | 94.88 | 96.79 | | OA/% | 66.67 | 86.77 | 92.84 | 95.08 | 99.03 | 98.04 | 98.92 | 99.39 | | AA/% | 60.42 | 83.11 | 85.72 | 90.9 | 97.37 | 96.47 | 97.94 | 99.06 | | Kappa | 0.619 8 | 0.847 5 | 0.918 8 | 0.943 9 | 0.988 9 | 0.977 6 | 0.987 7 | 0.993 0 |
|
|
|