基于上下文敏感贝叶斯网络的角度阈值多元变化检测
朱睿, 李轶鲲, 李小军, 杨树文, 谢江陵

Multivariate alteration detection using angle thresholds based on a context-sensitive Bayesian network
ZHU Rui, LI Yikun, LI Xiaojun, YANG Shuwen, XIE Jiangling
表2 研究区1和研究区2变化检测算法性能比较
Tab.2 Performance results of change detection algorithms in study area 1 and study area 2
算法 研究区1(林地到荒地) 研究区2(建筑物到林地) 研究区2(建筑物到荒地)
错检
率/%
漏检
率/%
总体精
度/%
Kappa
系数
错检
率/%
漏检
率/%
总体精
度/%
Kappa
系数
错检
率/%
漏检
率/%
总体精
度/%
Kappa
系数
本文算法 13.08 2.62 94.69 0.879 3 21.26 21.38 98.46 0.778 8 22.34 13.44 98.09 0.808 7
FCM-SBN-
CVAPS-AT
26.61 4.37 87.98 0.739 9 58.69 7.77 95.00 0.548 1 18.16 33.18 97.81 0.723 4
SVM-CVAPS-
AT
18.61 14.08 89.62 0.760 1 50.24 54.42 96.38 0.497 1 49.49 44.89 95.08 0.501 2
FCM-CSBN-
CVAPS-MC
14.82 3.36 95.62 0.859 0 26.64 28.14 98.05 0.715 9 19.54 33.62 97.53 0.714 6
FCM-SBN-
CVAPS-MC
18.26 4.96 91.94 0.819 0 57.97 15.04 95.75 0.510 2 18.69 43.47 97.19 0.652 8
SVM-CVAPS-
MC
8.45 68.23 78.10 0.372 1 53.21 73.84 94.85 0.311 0
FCM-CSBN-
PCC
24.72 1.99 89.48 0.772 3 51.90 34.73 96.21 0.534 6 58.04 42.18 93.93 0.454 9
DCVA 30.86 2.78 85.84 0.701 7 90.05 9.33 70.10 0.122 4 94.32 69.83 71.61 0.013 0