基于上下文敏感贝叶斯网络的角度阈值多元变化检测
|
|
朱睿, 李轶鲲, 李小军, 杨树文, 谢江陵
|
Multivariate alteration detection using angle thresholds based on a context-sensitive Bayesian network
|
|
ZHU Rui, LI Yikun, LI Xiaojun, YANG Shuwen, XIE Jiangling
|
|
表2 研究区1和研究区2变化检测算法性能比较
|
Tab.2 Performance results of change detection algorithms in study area 1 and study area 2
|
|
| 算法 | 研究区1(林地到荒地) | 研究区2(建筑物到林地) | 研究区2(建筑物到荒地) | 错检 率/% | 漏检 率/% | 总体精 度/% | Kappa 系数 | 错检 率/% | 漏检 率/% | 总体精 度/% | Kappa 系数 | 错检 率/% | 漏检 率/% | 总体精 度/% | Kappa 系数 | | 本文算法 | 13.08 | 2.62 | 94.69 | 0.879 3 | 21.26 | 21.38 | 98.46 | 0.778 8 | 22.34 | 13.44 | 98.09 | 0.808 7 | FCM-SBN- CVAPS-AT | 26.61 | 4.37 | 87.98 | 0.739 9 | 58.69 | 7.77 | 95.00 | 0.548 1 | 18.16 | 33.18 | 97.81 | 0.723 4 | SVM-CVAPS- AT | 18.61 | 14.08 | 89.62 | 0.760 1 | 50.24 | 54.42 | 96.38 | 0.497 1 | 49.49 | 44.89 | 95.08 | 0.501 2 | FCM-CSBN- CVAPS-MC | 14.82 | 3.36 | 95.62 | 0.859 0 | 26.64 | 28.14 | 98.05 | 0.715 9 | 19.54 | 33.62 | 97.53 | 0.714 6 | FCM-SBN- CVAPS-MC | 18.26 | 4.96 | 91.94 | 0.819 0 | 57.97 | 15.04 | 95.75 | 0.510 2 | 18.69 | 43.47 | 97.19 | 0.652 8 | SVM-CVAPS- MC | 8.45 | 68.23 | 78.10 | 0.372 1 | —① | — | — | — | 53.21 | 73.84 | 94.85 | 0.311 0 | FCM-CSBN- PCC | 24.72 | 1.99 | 89.48 | 0.772 3 | 51.90 | 34.73 | 96.21 | 0.534 6 | 58.04 | 42.18 | 93.93 | 0.454 9 | | DCVA | 30.86 | 2.78 | 85.84 | 0.701 7 | 90.05 | 9.33 | 70.10 | 0.122 4 | 94.32 | 69.83 | 71.61 | 0.013 0 |
|
|
|