基于全色-多光谱双流卷积网络的端到端地物分类方法
|
|
李英龙, 邓毓弸, 孔赟珑, 陈静波, 孟瑜, 刘帝佑
|
End-to-end land cover classification based on panchromatic-multispectral dual-stream convolutional network
|
|
LI Yinglong, DENG Yupeng, KONG Yunlong, CHEN Jingbo, MENG Yu, LIU Diyou
|
|
表1 在10 m地表覆盖数据集上不同方法的分类指标
|
Tab.1 Classification index of different methods on 10 m land cover dataset (%)
|
|
| 类别 | 方法 | IoU | mIoU | OA | mFscore | Kappa | | 耕地 | 植被 | 人造地表 | 裸地 | 水域 | 经典的语义 分割网络 | Deeplabv3 | 90.94 | 44.83 | 44.93 | 82.12 | 88.28 | 58.52 | 87.48 | 80.62 | 78.16 | | PspNet | 90.77 | 44.57 | 46.58 | 82.55 | 87.76 | 58.70 | 87.57 | 80.86 | 78.36 | | SegNet | 91.07 | 43.73 | 43.38 | 83.84 | 89.16 | 58.53 | 87.76 | 80.43 | 78.27 | | HRNet | 91.34 | 45.94 | 50.74 | 83.29 | 88.88 | 60.03 | 88.44 | 82.15 | 79.72 | | EfficientUNet | 92.10 | 51.17 | 55.39 | 81.93 | 89.81 | 61.73 | 89.59 | 83.92 | 81.74 | 遥感领域的语 义分割网络 | UNetFormer | 91.41 | 46.22 | 47.61 | 83.36 | 88.95 | 59.59 | 88.20 | 81.66 | 79.33 | | MACUNet | 91.48 | 45.97 | 52.95 | 83.93 | 88.95 | 60.55 | 88.80 | 82.64 | 80.38 | | ABCNet | 91.97 | 49.11 | 58.34 | 84.34 | 88.95 | 62.12 | 89.85 | 84.21 | 82.07 | | MANet | 92.43 | 51.62 | 57.42 | 85.24 | 89.72 | 62.74 | 90.06 | 84.74 | 82.68 | | MAResUNet | 92.03 | 49.69 | 57.37 | 86.62 | 89.62 | 62.55 | 89.96 | 84.50 | 82.29 | | DSEUNet(本文方法) | 92.53 | 52.86 | 58.33 | 86.77 | 89.59 | 63.35 | 90.42 | 85.28 | 83.23 |
|
|
|