Please wait a minute...
 
国土资源遥感  2010, Vol. 22 Issue (1): 123-126    DOI: 10.6046/gtzyyg.2010.01.23
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于知识工程师的崇明岛东滩自然保护区盐沼植被分类研究

阿也提古丽•斯迪克, 赵书河, 左平, 王春红
南京大学地理与海洋科学学院,南京210093
The Classification of Salt Marsh Vegetation for Chongming Dongtan
Nature Reserve Based on Knowledge Engineer
 Ayetiguli, ZHAO Shu-He, ZUO Ping, WANG Chun-Hong
School of Geographic and Oceanographic Sciences,Nanjing University,Nanjing 210093,China
全文: PDF(845 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

以崇明东滩自然保护区盐沼植被为研究对象,利用Landsat TM遥感图像,结合现场调查和前人关于东滩时空动态变化的研究结果,确定崇明

岛东滩主要分布的盐沼植被类型,提出了基于知识工程师的植被分类方法。与常规非监督和监督分类相比,该方法的精度较高,总体精度为92.35%

,kappa系数为0.9072,而非监督分类和监督分类(最大似然法)的总体精度分别为86.92%和89.10%。实验结果表明,该方法能够有效地对研究区植

被进行分类与识别,可为实现盐沼植被的自动提取提供理论依据和有效的方法途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余华琪
齐小平
关键词 煤层气煤层气高渗区带裂缝密度统计分析    
Abstract

This paper used Chongming Dongtan Nature Reserve as the research object for salt marsh vegetation classification based

on Landsat TM image. According to such image preprocessing measures as image geometric correction and subset image and on the

basis of analyses of Landsat TM remotely sensed images integrated with field survey and other studies of spatio-temporal dynamics

of Chongming Dongtan Nature Reserve, this paper confirmed the species of the vegetation in this area. The authors used knowledge

engineer to classify the vegetation, built knowledge base on the basis of vegetation spectral information and presented a

vegetation classification method based on the spectral information. The overall precision of the vegetation classification method

based on knowledge engineer is 92.35%, and the kappa coefficient is 0.907 2. The precision is higher than the overall precision

of the vegetation classification based on unsupervised classification and supervised classification (maximum likelihood): the

overall precisions of unsupervised classification and supervised classification are respectively 86.92% and 90.10%. The result

shows that the vegetation classification method can classify and discriminate vegetation effectively and the precision is higher

than that of other methods. The vegetation classification method provides a theoretical foundation and effective method for

automatic extraction of vegetation.

Key wordsCoal bed gas    High permeation belt of coal bed gas    Statistics and Analysis of Fracture Density
     出版日期: 2010-03-22
引用本文:   
阿也提古丽?斯迪克, 赵书河, 左平, 王春红. 基于知识工程师的崇明岛东滩自然保护区盐沼植被分类研究[J]. 国土资源遥感, 2010, 22(1): 123-126.
Ayetiguli, ZHAO Shu-He, ZUO Ping, WANG Chun-Hong. The Classification of Salt Marsh Vegetation for Chongming Dongtan
Nature Reserve Based on Knowledge Engineer. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 123-126.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2010.01.23      或      https://www.gtzyyg.com/CN/Y2010/V22/I1/123
[1] 余华琪, 齐小平. 遥感技术在鄂尔多斯盆地东南部煤层气勘探中的应用[J]. 国土资源遥感, 2001, 13(3): 11-14,69.
[2] 肖芊. 遥感技术在鸡西合作区煤层气综合评价中的应用研究[J]. 国土资源遥感, 2000, 12(4): 19-23,38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发