Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (3): 7-12    DOI: 10.6046/gtzyyg.2015.03.02
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
大气校正对基于遥感指数提取藻华信息的影响
张月, 肖彧, 常晶晶, 刘健, 王亚琼, 贺春燕, 何冰
吉林农业大学资源与环境学院, 长春 130118
Effects of atmospheric correction on extracting cyanobacteria bloom information based on remote sensing indices
ZHANG Yue, XIAO Yu, CHANG Jingjing, LIU Jian, WANG Yaqiong, HE Chunyan, HE Bing
College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
全文: PDF(1679 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 遥感技术使大范围实时监测蓝藻水华成为可能,但大气效应与太阳、地物及传感器的几何关系会影响辐射传输方程,从而对基于遥感指数的蓝藻信息提取产生影响,因此,探讨这些影响因子对藻华信息的提取精度有着积极意义。基于MODIS大气校正前后2种产品(MOD02和MOD09),利用单波段、比值植被指数、归一化差值植被指数和归一化水体指数4种遥感指数对2006年全年太湖藻华信息进行提取,并定量分析了气溶胶光学厚度、太阳高度角和卫星观测角等因素对遥感指数的影响程度。结果表明: 比值植被指数与归一化差值植被指数受大气影响程度较其他二者低,且比值植被指数对大气因素的敏感性较归一化差值植被指数低; 气溶胶的光学厚度与太阳高度角在不同程度上对指数提取结果造成影响,因此利用遥感指数提取藻华信息时需谨慎,以避免误判。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关红
贾科利
张至楠
马欣
关键词 光谱特征波段土壤盐渍化定量模型    
Abstract:Accurate maps of the spatial and temporal dynamics of cyanobacteria blooms are urgently needed in the Taihu Lake, which is a drinking water resource for cities around the lake. Satellite imagery can be used as a cost-effective method for remotely monitor trends in cyanobacteria blooms. However, atmospheric effects and sun-target-satellite geometry can make multi-temporal images of blooms inconsistent with each other and cause uncertainties in bloom data extraction. In this paper, four remote sensing approaches were applied to retrieve cyanobacteria bloom information in the Taihu Lake during the whole year of 2006. These approaches included the near infrared (NIR) single band data, the ratio vegetation index (RVI), the normalized difference vegetation index (NDVI), and the normalized difference water index(NDWI). Two kinds of MODIS (moderate-resolution imaging spectroradiometer) products, i.e., the top-of-atmosphere (TOA) radiance images without atmospheric correction (MOD02) and the surface reflectance images with atmospheric correction (MOD09), were selected as the data source. Furthermore, three factors comprising the aerosol optical thickness (AOT), the solar zenith angle, and the sensor zenith angle were chosen as indicators of radiation transfer processes to evaluate their influence on the remote sensing indices during the extraction of cyanobacteria bloom information. Specifically, the relationships between retrieval threshold values and the three indicators were analyzed to evaluate the temporal influences quantitatively. The results showed that: ① these three factors had more impact on NIR single band data and the NDWI, and less impact on the RVI and NDVI (RVI was less sensitive than NDVI in regard to the atmospheric factors); ② both AOT and the solar zenith angle were positively correlated with the threshold values. Whether or not these relationships hold water for other cases needs to be further examined. It is thus held that these four remote sensing approaches should be used carefully for monitoring cyanobacteria blooms when atmospheric correction is not applied.
Key wordsspectrum characteristic bands    soil salinization    quantitative model
收稿日期: 2014-04-01      出版日期: 2015-07-23
:  TP79  
基金资助:吉林农业大学国家级大学生创新创业训练计划项目"基于遥感指数的藻华时空变化研究"(编号: 201310193007)和吉林农业大学科研启动基金项目"蓝藻水华信息提取中遥感指数的可靠性研究"(编号: 201240)共同资助。
作者简介: 张月(1985-),女,硕士,讲师,主要从事遥感技术应用研究。Email:lisa_ling7892002@163.com。
引用本文:   
张月, 肖彧, 常晶晶, 刘健, 王亚琼, 贺春燕, 何冰. 大气校正对基于遥感指数提取藻华信息的影响[J]. 国土资源遥感, 2015, 27(3): 7-12.
ZHANG Yue, XIAO Yu, CHANG Jingjing, LIU Jian, WANG Yaqiong, HE Chunyan, HE Bing. Effects of atmospheric correction on extracting cyanobacteria bloom information based on remote sensing indices. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 7-12.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.03.02      或      https://www.gtzyyg.com/CN/Y2015/V27/I3/7
[1] 徐京萍,张柏,李方,等.基于MODIS数据的太湖藻华水体识别模式[J].湖泊科学,2008,20(2):191-195. Xu J P,Zhang B,Li F,et al.Detecting modes of cyanobacteria bloom using MODIS data in Lake Taihu[J].Journal of Lake Sciences,2008,20(2):191-195.
[2] 段洪涛,张寿选,张渊智.太湖蓝藻水华遥感监测方法[J].湖泊科学,2008,20(2):145-152. Duan H T,Zhang S X,Zhang Y Z.Cyanobacteria bloom monitoring with remote sensing in Lake Taihu[J].Journal of Lake Sciences,2008,20(2):145-152.
[3] 梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2001:28-33. Mei A X,Peng W L,Qin Q M,et al.An Introduction to Remote Sensing[M].Beijing:Higher Education Press,2001:28-33.
[4] Staylor W F.Degradation rates of the AVHRR visible channel for the NOAA 6,7,and 9 spacecraft[J].Journal of Atmospheric and Oceanic Technology,1990,7(3):411-423.
[5] Chander G,Markham B.Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2674-2677.
[6] 秦伯强,胡维平,陈伟民,等.太湖水环境演化过程与机理[M].北京:科学出版社,2004:1-8. Qin B Q,Hu W P,Chen W M,et al.The Process and Mechanism of Water Environment Evolution in Lake Taihu[M].Beijing:Science Press,2004:1-8.
[7] 徐希孺.遥感物理[M].北京:北京大学出版社,2005:292-297. Xu X R.Remote Sensing Physics[M].Beijing:Peking University Press,2005:292-297.
[8] Richer R.Geo-atmospheric processing of airborne imaging spectrometry data[J].International Journal of Remote Sensing,2002,23(13):2631-2649.
[9] Dekker A G.The use of the thematic mapper for the analysis of eutrophic lakes:A case study in the Netherlands[J].International Journal of Remote Sensing,1993,14(5):799-822.
[10] Thiemann S,Kaufmann H.Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg Lake district,Germany[J].Remote Sensing of Environment,2000,73(2):227-235.
[11] Dall'Olmo G,Gitelson A A,Rundquist D C,et al.Assessing the potential of SeaWIFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands[J].Remote Sensing and Environment,2005,96(2):176-187.
[12] Reinart A,Kutser T.Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea[J].Remote Sensing and Environment,2006,102(1/2):74-85.
[13] Koponen S,Pulliainen J,Kallio K,et al.Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data[J]. Remote Sensing of Environment,2002,79(1):51-59.
[14] 顾亮,张玉超,钱新,等.遥感指数在湖泊叶绿素a反演研究中的应用[J].环境保护科学,2008,34(2):53-56. Gu L,Zhang Y C,Qian X,et al.Application of remote sensing index in retrieving chlorophyll-a concentration of lakes[J].Environmental Protection Science,2008,34(2):53-56.
[15] Rouse J W,Haas D W.Monitoring the Vernal Advancement and Retrogradation(Greenwave Effect)of Natural Vegetation[R].Greenbelt,Md:NASA Goddard Space Flight Cent,1974:11-13.
[16] Tucker C J.Red and photographic infrared linear combinations for monitoring vegetation[J].Remote Sensing of Environment,1979,8(2):127-150.
[17] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:121-124. Zhao Y S.The Principle and Method of Analysis of Remote Sensing Application[M].Beijing:Science Press,2003:121-124.
[18] 金相灿,刘明亮.中国湖泊富营养化[M].北京:中国环境科学出版社,1990:51-54. Jin X C,Liu M L.Lake Eutrophication in China[M].Beijing:China Environment Science Press,1990:51-54.
[1] 吴霞, 王长军, 樊丽琴, 李磊. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2): 124-133.
[2] 冯娟, 丁建丽, 魏雯瑜. 基于雷达数据的区域土壤盐渍化监测[J]. 国土资源遥感, 2019, 31(1): 195-203.
[3] 关红, 贾科利, 张至楠, 马欣. 盐渍化土壤光谱特征分析与建模[J]. 国土资源遥感, 2015, 27(2): 100-104.
[4] 李晓明, 杨劲松, 余美, 杨奇勇, 刘梅先. 基于电磁感应的干旱区土壤盐渍化定量遥感研究[J]. 国土资源遥感, 2012, 24(1): 53-58.
[5] 戚浩平, 翁永玲, 赵福岳, 方洪宾. 茶卡-共和盆地土壤盐分与光谱特征研究[J]. 国土资源遥感, 2010, 22(s1): 4-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发